perplexity : add BOS for each chunk

This commit is contained in:
Georgi Gerganov 2023-05-07 11:04:52 +03:00
parent cad6ff5d36
commit 7f33230a40
No known key found for this signature in database
GPG key ID: 449E073F9DC10735

View file

@ -25,46 +25,56 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]` // Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
auto tokens = ::llama_tokenize(ctx, params.prompt, true); auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0; int count = 0;
int seq_count = tokens.size() / params.n_ctx;
int n_vocab = llama_n_vocab(ctx); const int n_chunk = tokens.size() / params.n_ctx;
const int n_vocab = llama_n_vocab(ctx);
const int n_batch = params.n_batch;
double nll = 0.0; double nll = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch); fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < seq_count; ++i) { for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.n_ctx; const int start = i * params.n_ctx;
const int end = start + params.n_ctx; const int end = start + params.n_ctx;
std::vector<float> logits; const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
const int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch;
const auto start_t = std::chrono::high_resolution_clock::now(); std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
for (int j = 0; j < num_batches; ++j) { for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * params.n_batch; const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, params.n_batch); const int batch_size = std::min(end - batch_start, n_batch);
// TODO: not perfect since this can be in the middle of a word, but it is better than nothing // save original token and restore it after eval
tokens[batch_start] = llama_token_bos(); const auto token_org = tokens[batch_start];
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) { if (j == 0) {
tokens[batch_start] = llama_token_bos();
}
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__); fprintf(stderr, "%s : failed to eval\n", __func__);
return; return;
} }
tokens[batch_start] = token_org;
const auto batch_logits = llama_get_logits(ctx); const auto batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
} }
const auto end_t = std::chrono::high_resolution_clock::now(); const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) { if (i == 0) {
const float seconds = std::chrono::duration<float>(end_t - start_t).count(); const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, seconds); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(seconds * seq_count); int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) { if (total_seconds >= 60*60) {
fprintf(stderr, "%d hours ", total_seconds / (60*60)); fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60); total_seconds = total_seconds % (60*60);
@ -74,7 +84,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// We get the logits for all the tokens in the context window (params.n_ctx) // We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half the window (so the model always has // calculate the perplexity over the last half of the window (so the model always has
// some context to predict the token). // some context to predict the token).
// //
// We rely on the fact that attention in the forward pass only looks at previous // We rely on the fact that attention in the forward pass only looks at previous
@ -86,10 +96,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// process the entire prompt. // process the entire prompt.
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones. // Calculate probability of next token, given the previous ones.
std::vector<float> tok_logits( const std::vector<float> tok_logits(
logits.begin() + j * n_vocab, logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab); logits.begin() + (j + 1) * n_vocab);
float prob = softmax(tok_logits)[tokens[start + j + 1]];
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob); nll += -std::log(prob);
++count; ++count;
} }