Inference support for T5 and FLAN-T5 model families (#5763)
* llama : add inference support and model types for T5 and FLAN-T5 model families * llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token() * common, llama-cli, llama-batched : add support for encoder-decoder models * convert-hf : handle shared token embeddings tensors in T5Model * convert-hf : add support for SentencePiece BPE tokenizer in T5Model (for Pile-T5 models) * convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model * convert : add t5 tokenizer tests, use "slow" HF tokenizer for t5 --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
f8c4c0738d
commit
807b0c49ff
33 changed files with 946 additions and 31 deletions
|
@ -485,6 +485,13 @@ extern "C" {
|
|||
// Get a llama model tensor
|
||||
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||||
|
||||
// Returns true if the model contains an encoder that requires llama_encode() call
|
||||
LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
|
||||
|
||||
// For encoder-decoder models, this function returns id of the token that must be provided
|
||||
// to the decoder to start generating output sequence. For other models, it returns -1.
|
||||
LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API uint32_t llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
|
@ -770,6 +777,14 @@ extern "C" {
|
|||
// Frees a batch of tokens allocated with llama_batch_init()
|
||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||
|
||||
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
|
||||
// Stores the encoder output internally for later use by the decoder cross-attention layers.
|
||||
// 0 - success
|
||||
// < 0 - error
|
||||
LLAMA_API int32_t llama_encode(
|
||||
struct llama_context * ctx,
|
||||
struct llama_batch batch);
|
||||
|
||||
// Positive return values does not mean a fatal error, but rather a warning.
|
||||
// 0 - success
|
||||
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue