take out attention_type; add in llama_set_embeddings
This commit is contained in:
parent
d4e6972f60
commit
8093253b41
5 changed files with 19 additions and 39 deletions
|
@ -546,17 +546,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
else { invalid_param = true; }
|
||||
return true;
|
||||
}
|
||||
if (arg == "--attention") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
|
||||
else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NONCAUSAL; }
|
||||
else { invalid_param = true; }
|
||||
return true;
|
||||
}
|
||||
if (arg == "--defrag-thold" || arg == "-dt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -2460,7 +2449,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.pooling_type = params.pooling_type;
|
||||
cparams.attention_type = params.attention_type;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.cb_eval = params.cb_eval;
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
|
|
|
@ -94,7 +94,6 @@ struct gpt_params {
|
|||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
|
|
@ -44,6 +44,8 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
|||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
// run model
|
||||
llama_decode(ctx, batch);
|
||||
|
@ -97,6 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
|
|||
llama_token eos_token = llama_token_eos(mdl);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
|
||||
|
@ -165,13 +170,7 @@ int main(int argc, char * argv[]) {
|
|||
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx_gen = llama_new_context_with_model(mdl, cparams);
|
||||
|
||||
// create embedding context
|
||||
cparams.embeddings = true;
|
||||
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
cparams.attention_type = LLAMA_ATTENTION_TYPE_NONCAUSAL;
|
||||
llama_context * ctx_emb = llama_new_context_with_model(mdl, cparams);
|
||||
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
|
||||
|
||||
// ### Embedding/Representation ###
|
||||
// samples taken from: https://github.com/ContextualAI/gritlm#basic
|
||||
|
@ -189,8 +188,8 @@ int main(int argc, char * argv[]) {
|
|||
};
|
||||
|
||||
// No need to add instruction for retrieval documents
|
||||
const std::vector<std::vector<float>> d_rep = encode(ctx_emb, documents, gritlm_instruction(""));
|
||||
const std::vector<std::vector<float>> q_rep = encode(ctx_emb, queries, gritlm_instruction(instruction));
|
||||
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
||||
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
||||
|
||||
const int n_embd = llama_n_embd(mdl);
|
||||
|
||||
|
@ -209,11 +208,10 @@ int main(int argc, char * argv[]) {
|
|||
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||
{
|
||||
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
|
||||
std::string response = generate(ctx_gen, prompt, true);
|
||||
std::string response = generate(ctx, prompt, true);
|
||||
}
|
||||
|
||||
llama_free(ctx_gen);
|
||||
llama_free(ctx_emb);
|
||||
llama_free(ctx);
|
||||
llama_free_model(mdl);
|
||||
llama_backend_free();
|
||||
|
||||
|
|
12
llama.cpp
12
llama.cpp
|
@ -15931,7 +15931,6 @@ struct llama_context_params llama_context_default_params() {
|
|||
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
|
||||
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
||||
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
|
||||
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
|
||||
/*.rope_freq_base =*/ 0.0f,
|
||||
/*.rope_freq_scale =*/ 0.0f,
|
||||
/*.yarn_ext_factor =*/ -1.0f,
|
||||
|
@ -16173,12 +16172,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
|
||||
cparams.yarn_attn_factor *= hparams.rope_attn_factor;
|
||||
|
||||
if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
|
||||
cparams.causal_attn = hparams.causal_attn;
|
||||
} else {
|
||||
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
|
||||
}
|
||||
cparams.causal_attn = hparams.causal_attn;
|
||||
|
||||
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
|
||||
if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
|
||||
|
@ -17914,6 +17908,10 @@ void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)
|
|||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
|
||||
ctx->cparams.embeddings = embeddings;
|
||||
}
|
||||
|
||||
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
|
11
llama.h
11
llama.h
|
@ -177,12 +177,6 @@ extern "C" {
|
|||
LLAMA_POOLING_TYPE_LAST = 3,
|
||||
};
|
||||
|
||||
enum llama_attention_type {
|
||||
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
|
||||
LLAMA_ATTENTION_TYPE_CAUSAL = 0,
|
||||
LLAMA_ATTENTION_TYPE_NONCAUSAL = 1,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||||
|
@ -300,7 +294,6 @@ extern "C" {
|
|||
|
||||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||||
enum llama_attention_type attention_type; // causal, non-causal, or unspecified
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||
|
@ -793,6 +786,10 @@ extern "C" {
|
|||
// Get the number of threads used for prompt and batch processing (multiple token).
|
||||
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
|
||||
|
||||
// Set whether the model is in embeddings model or not
|
||||
// If true, embeddings will be returned but logits will not
|
||||
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
|
||||
|
||||
// Set whether to use causal attention or not
|
||||
// If set to true, the model will only attend to the past tokens
|
||||
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue