split fattn compile via extern templates
This commit is contained in:
parent
f4003cfba1
commit
84d9277fe2
9 changed files with 1651 additions and 1369 deletions
14
Makefile
14
Makefile
|
@ -421,6 +421,15 @@ ifdef LLAMA_CUBLAS
|
||||||
LLAMA_CUDA := 1
|
LLAMA_CUDA := 1
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
OBJS_CUDA_TEMP_INST = $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-wmma*.cu))
|
||||||
|
ifdef LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*.cu))
|
||||||
|
else
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu))
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu))
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*f16-f16.cu))
|
||||||
|
endif # LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
ifdef LLAMA_CUDA
|
ifdef LLAMA_CUDA
|
||||||
ifneq ('', '$(wildcard /opt/cuda)')
|
ifneq ('', '$(wildcard /opt/cuda)')
|
||||||
CUDA_PATH ?= /opt/cuda
|
CUDA_PATH ?= /opt/cuda
|
||||||
|
@ -431,6 +440,7 @@ ifdef LLAMA_CUDA
|
||||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||||
MK_NVCCFLAGS += -use_fast_math
|
MK_NVCCFLAGS += -use_fast_math
|
||||||
ifdef LLAMA_FATAL_WARNINGS
|
ifdef LLAMA_FATAL_WARNINGS
|
||||||
MK_NVCCFLAGS += -Werror all-warnings
|
MK_NVCCFLAGS += -Werror all-warnings
|
||||||
|
@ -508,7 +518,7 @@ define NVCC_COMPILE
|
||||||
endef # NVCC_COMPILE
|
endef # NVCC_COMPILE
|
||||||
endif # JETSON_EOL_MODULE_DETECT
|
endif # JETSON_EOL_MODULE_DETECT
|
||||||
|
|
||||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
$(NVCC_COMPILE)
|
$(NVCC_COMPILE)
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
|
@ -587,6 +597,7 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
|
||||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
@ -751,6 +762,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||||
clean:
|
clean:
|
||||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||||
rm -vrf ggml-cuda/*.o
|
rm -vrf ggml-cuda/*.o
|
||||||
|
rm -vrf ggml-cuda/template-instances/*.o
|
||||||
find examples pocs -type f -name "*.o" -delete
|
find examples pocs -type f -name "*.o" -delete
|
||||||
|
|
||||||
#
|
#
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
#pragma once
|
||||||
|
|
||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
#include "vecdotq.cuh"
|
#include "vecdotq.cuh"
|
||||||
|
|
||||||
|
@ -510,6 +512,48 @@ static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ v
|
||||||
return x[i];
|
return x[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <int D>
|
||||||
|
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
|
||||||
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D>
|
||||||
|
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
|
||||||
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
|
||||||
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
|
||||||
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
|
||||||
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
|
||||||
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
|
||||||
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
|
||||||
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||||
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
|
||||||
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
|
||||||
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
|
||||||
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
|
||||||
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
|
||||||
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
template<int D, int parallel_blocks> // D == head size
|
template<int D, int parallel_blocks> // D == head size
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
__launch_bounds__(D, 1)
|
__launch_bounds__(D, 1)
|
||||||
|
@ -565,13 +609,12 @@ static constexpr ggml_type ggml_type_f16 = GGML_TYPE_F16;
|
||||||
typedef half f16;
|
typedef half f16;
|
||||||
typedef float f32;
|
typedef float f32;
|
||||||
|
|
||||||
#define FATTN_VEC_CASE(type_VKQ, D, type_suffix_K, type_suffix_V) \
|
#define FATTN_VEC_CASE(type_VKQ, D, type_K, type_V) \
|
||||||
if (Q->ne[0] == (D) && K->type == ggml_type_##type_suffix_K && V->type == ggml_type_##type_suffix_V) { \
|
if (Q->ne[0] == (D) && K->type == type_K && V->type == type_V) { \
|
||||||
constexpr int nwarps = (D)/WARP_SIZE; \
|
constexpr int nwarps = (D)/WARP_SIZE; \
|
||||||
constexpr bool Q_q8_1 = ggml_type_##type_suffix_K != GGML_TYPE_F16; \
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_##type_VKQ< \
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_##type_VKQ< \
|
||||||
(D), cols_per_block, parallel_blocks, \
|
(D), cols_per_block, parallel_blocks, \
|
||||||
vec_dot_fattn_vec_KQ_##type_suffix_K<type_VKQ, (D)>, Q_q8_1, dequantize_1_##type_suffix_V<type_VKQ>>; \
|
type_K, type_V>; \
|
||||||
launch_fattn<(D), parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block); \
|
launch_fattn<(D), parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block); \
|
||||||
return; \
|
return; \
|
||||||
} \
|
} \
|
||||||
|
@ -582,7 +625,7 @@ static void on_no_fattn_vec_case(const int D) {
|
||||||
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
||||||
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
} else {
|
} else if (D == 128) {
|
||||||
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
||||||
fprintf(stderr, "Supported combinations:\n");
|
fprintf(stderr, "Supported combinations:\n");
|
||||||
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
||||||
|
@ -590,6 +633,10 @@ static void on_no_fattn_vec_case(const int D) {
|
||||||
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
||||||
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
|
||||||
|
fprintf(stderr, "Only f16 is supported.\n");
|
||||||
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -1,425 +0,0 @@
|
||||||
#include "common.cuh"
|
|
||||||
#include "fattn-common.cuh"
|
|
||||||
#include "fattn-vec-f16.cuh"
|
|
||||||
|
|
||||||
template<int D, int ncols, int parallel_blocks, vec_dot_KQ_f16_t vec_dot_KQ, bool Q_q8_1, dequantize_1_f16_t dequantize_1_v> // D == head size
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(D, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_vec_ext_f16(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int nb21,
|
|
||||||
const int nb22,
|
|
||||||
const int nb23,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
#if FP16_AVAILABLE
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
||||||
|
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
||||||
Q += nb02* blockIdx.y + nb01*ic0;
|
|
||||||
K += nb12*(blockIdx.y / gqa_ratio);
|
|
||||||
V += nb22*(blockIdx.y / gqa_ratio);
|
|
||||||
|
|
||||||
const half * maskh = (const half *) mask + ne11*ic0;
|
|
||||||
|
|
||||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
|
||||||
const half slopeh = __float2half(slopef);
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
|
||||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
||||||
__builtin_assume(tid < D);
|
|
||||||
|
|
||||||
__shared__ half KQ[ncols*D];
|
|
||||||
half2 * KQ2 = (half2 *) KQ;
|
|
||||||
|
|
||||||
half kqmax[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax[j] = -HALF_MAX_HALF;
|
|
||||||
}
|
|
||||||
half kqsum[ncols] = {0.0f};
|
|
||||||
|
|
||||||
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
|
||||||
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
if (threadIdx.y == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
|
||||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
|
||||||
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
|
||||||
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
|
||||||
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
|
||||||
if (Q_q8_1) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
if (j0 + nwarps > ncols && j >= ncols) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reuse KQ as temporary storage for converting Q to q8_1:
|
|
||||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
||||||
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
|
||||||
|
|
||||||
// Set memory to zero if out of bounds:
|
|
||||||
if (ncols > 2 && ic0 + j >= ne01) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
tmp_q_i32[i] = 0;
|
|
||||||
}
|
|
||||||
if (threadIdx.x < D/QK8_1) {
|
|
||||||
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
|
||||||
}
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
const float * Q_f = (const float *) (Q + j*nb01);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
||||||
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
|
||||||
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
} else {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
|
||||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
|
||||||
|
|
||||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
||||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
||||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
||||||
|
|
||||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
|
||||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
|
||||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
|
||||||
half kqmax_new = kqmax[0];
|
|
||||||
half kqmax_new_arr[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax_new_arr[j] = kqmax[j];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
||||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
||||||
|
|
||||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
|
||||||
sum = warp_reduce_sum(sum);
|
|
||||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
|
||||||
|
|
||||||
if (ncols == 1) {
|
|
||||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
|
||||||
} else {
|
|
||||||
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
KQ[j*D + i_KQ] = sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
|
||||||
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
|
|
||||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
|
||||||
kqmax[j] = kqmax_new_j;
|
|
||||||
|
|
||||||
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
|
||||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
||||||
KQ[j*D + tid] = val;
|
|
||||||
|
|
||||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
|
||||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 V_k;
|
|
||||||
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
|
|
||||||
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
||||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
||||||
|
|
||||||
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= kqsum[j_VKQ];
|
|
||||||
}
|
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif // FP16_AVAILABLE
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
ggml_tensor * KQV = dst;
|
|
||||||
ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 1;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64: {
|
|
||||||
constexpr int D = 64;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<
|
|
||||||
D, cols_per_block, parallel_blocks, vec_dot_fattn_vec_KQ_f16<half, D>, false, dequantize_1_f16<half>>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 128: {
|
|
||||||
constexpr int D = 128;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<
|
|
||||||
D, cols_per_block, parallel_blocks, vec_dot_fattn_vec_KQ_f16<half, D>, false, dequantize_1_f16<half>>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 256: {
|
|
||||||
constexpr int D = 256;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<
|
|
||||||
D, cols_per_block, parallel_blocks, vec_dot_fattn_vec_KQ_f16<half, D>, false, dequantize_1_f16<half>>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int cols_per_block, int parallel_blocks>
|
|
||||||
void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 64, f16, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_1, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q5_1, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, q4_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, q5_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, q5_1)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, f16)
|
|
||||||
#else
|
|
||||||
FATTN_VEC_CASE(f16, 128, q4_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, q8_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f16, 128, f16, f16)
|
|
||||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
|
||||||
|
|
||||||
on_no_fattn_vec_case(Q->ne[0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * KQV = dst;
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
|
||||||
constexpr int cols_per_block = 1;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
|
||||||
constexpr int cols_per_block = 2;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
|
||||||
constexpr int cols_per_block = 4;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 1;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
}
|
|
|
@ -1,5 +1,395 @@
|
||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(D, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_vec_ext_f16(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
||||||
|
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||||
|
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
Q += nb02* blockIdx.y + nb01*ic0;
|
||||||
|
K += nb12*(blockIdx.y / gqa_ratio);
|
||||||
|
V += nb22*(blockIdx.y / gqa_ratio);
|
||||||
|
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
__builtin_assume(tid < D);
|
||||||
|
|
||||||
|
__shared__ half KQ[ncols*D];
|
||||||
|
half2 * KQ2 = (half2 *) KQ;
|
||||||
|
|
||||||
|
half kqmax[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax[j] = -HALF_MAX_HALF;
|
||||||
|
}
|
||||||
|
half kqsum[ncols] = {0.0f};
|
||||||
|
|
||||||
|
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
||||||
|
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
if (threadIdx.y == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
||||||
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||||
|
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||||
|
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
||||||
|
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||||
|
if (Q_q8_1) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (j0 + nwarps > ncols && j >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
// Set memory to zero if out of bounds:
|
||||||
|
if (ncols > 2 && ic0 + j >= ne01) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
tmp_q_i32[i] = 0;
|
||||||
|
}
|
||||||
|
if (threadIdx.x < D/QK8_1) {
|
||||||
|
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float * Q_f = (const float *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||||
|
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
} else {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||||
|
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||||
|
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||||
|
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||||
|
half kqmax_new = kqmax[0];
|
||||||
|
half kqmax_new_arr[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax_new_arr[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||||
|
|
||||||
|
if (ncols == 1) {
|
||||||
|
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||||
|
} else {
|
||||||
|
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
KQ[j*D + i_KQ] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||||
|
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
|
||||||
|
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||||
|
kqmax[j] = kqmax_new_j;
|
||||||
|
|
||||||
|
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
||||||
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||||
|
KQ[j*D + tid] = val;
|
||||||
|
|
||||||
|
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||||
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 V_k;
|
||||||
|
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
|
||||||
|
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
|
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= kqsum[j_VKQ];
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * KQV = dst;
|
||||||
|
ggml_tensor * Q = dst->src[0];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
|
|
||||||
|
GGML_ASSERT(K->type == type_K);
|
||||||
|
GGML_ASSERT(V->type == type_V);
|
||||||
|
|
||||||
|
if (Q->ne[1] == 1) {
|
||||||
|
constexpr int cols_per_block = 1;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] == 2) {
|
||||||
|
constexpr int cols_per_block = 2;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 4) {
|
||||||
|
constexpr int cols_per_block = 4;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_vec_f16_case \
|
||||||
|
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
|
@ -1,365 +0,0 @@
|
||||||
#include "common.cuh"
|
|
||||||
#include "fattn-common.cuh"
|
|
||||||
#include "fattn-vec-f32.cuh"
|
|
||||||
|
|
||||||
template<int D, int ncols, int parallel_blocks, vec_dot_KQ_f32_t vec_dot_KQ, bool Q_q8_1, dequantize_1_f32_t dequantize_1_v> // D == head size
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(D, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_vec_ext_f32(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int nb21,
|
|
||||||
const int nb22,
|
|
||||||
const int nb23,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
||||||
|
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
||||||
Q += nb02* blockIdx.y + nb01*ic0;
|
|
||||||
K += nb12*(blockIdx.y / gqa_ratio);
|
|
||||||
V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
|
|
||||||
const half * maskh = (const half *) mask + ne11*ic0;
|
|
||||||
|
|
||||||
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
|
||||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
||||||
__builtin_assume(tid < D);
|
|
||||||
|
|
||||||
__shared__ float KQ[ncols*D];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
float kqmax[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax[j] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
float kqsum[ncols] = {0.0f};
|
|
||||||
|
|
||||||
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
|
||||||
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
if (threadIdx.y == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
|
||||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
|
||||||
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
|
|
||||||
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
|
|
||||||
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
|
||||||
if (Q_q8_1) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
if (j0 + nwarps > ncols && j >= ncols) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reuse KQ as temporary storage for converting Q to q8_1:
|
|
||||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
||||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
|
||||||
|
|
||||||
// Set memory to zero if out of bounds:
|
|
||||||
if (ncols > 2 && ic0 + j >= ne01) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
tmp_q_i32[i] = 0;
|
|
||||||
}
|
|
||||||
if (threadIdx.x < D/QK8_1) {
|
|
||||||
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
|
||||||
}
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
const float * Q_f = (const float *) (Q + j*nb01);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
||||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
|
||||||
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
} else {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
|
||||||
Q_f2[j][i0/WARP_SIZE].x *= scale;
|
|
||||||
Q_f2[j][i0/WARP_SIZE].y *= scale;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float VKQ[ncols] = {0.0f};
|
|
||||||
|
|
||||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
||||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
||||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
||||||
|
|
||||||
float kqmax_new_arr[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax_new_arr[j] = kqmax[j];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
||||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
||||||
|
|
||||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
|
||||||
sum = warp_reduce_sum(sum);
|
|
||||||
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
|
||||||
|
|
||||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
|
||||||
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
KQ[j*D + i_KQ] = sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
float kqmax_new_j = kqmax_new_arr[j];
|
|
||||||
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
|
|
||||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
|
||||||
kqmax[j] = kqmax_new_j;
|
|
||||||
|
|
||||||
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
|
||||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
||||||
KQ[j*D + tid] = val;
|
|
||||||
|
|
||||||
VKQ[j] *= KQ_max_scale;
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k = 0; k < D; ++k) {
|
|
||||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
VKQ[j] += V_ki*KQ[j*D + k];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
||||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
||||||
|
|
||||||
float dst_val = VKQ[j_VKQ];
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= kqsum[j_VKQ];
|
|
||||||
}
|
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int cols_per_block, int parallel_blocks>
|
|
||||||
void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 64, f16, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_1, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q5_1, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, f16)
|
|
||||||
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, q4_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, q5_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, q5_1)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, f16)
|
|
||||||
#else
|
|
||||||
FATTN_VEC_CASE(f32, 128, q4_0, q4_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, q8_0, q8_0)
|
|
||||||
FATTN_VEC_CASE(f32, 128, f16, f16)
|
|
||||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
|
||||||
|
|
||||||
on_no_fattn_vec_case(Q->ne[0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
|
||||||
constexpr int cols_per_block = 1;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
|
||||||
constexpr int cols_per_block = 2;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
|
||||||
constexpr int cols_per_block = 4;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 1;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
}
|
|
|
@ -1,3 +1,376 @@
|
||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(D, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_vec_ext_f32(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
|
||||||
|
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||||
|
constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
Q += nb02* blockIdx.y + nb01*ic0;
|
||||||
|
K += nb12*(blockIdx.y / gqa_ratio);
|
||||||
|
V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
__builtin_assume(tid < D);
|
||||||
|
|
||||||
|
__shared__ float KQ[ncols*D];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
float kqmax[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax[j] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
float kqsum[ncols] = {0.0f};
|
||||||
|
|
||||||
|
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
||||||
|
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
if (threadIdx.y == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||||
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||||
|
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
|
||||||
|
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
|
||||||
|
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||||
|
if (Q_q8_1) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (j0 + nwarps > ncols && j >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
// Set memory to zero if out of bounds:
|
||||||
|
if (ncols > 2 && ic0 + j >= ne01) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
tmp_q_i32[i] = 0;
|
||||||
|
}
|
||||||
|
if (threadIdx.x < D/QK8_1) {
|
||||||
|
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float * Q_f = (const float *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||||
|
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
} else {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||||
|
Q_f2[j][i0/WARP_SIZE].x *= scale;
|
||||||
|
Q_f2[j][i0/WARP_SIZE].y *= scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float VKQ[ncols] = {0.0f};
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
float kqmax_new_arr[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax_new_arr[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||||
|
|
||||||
|
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
KQ[j*D + i_KQ] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float kqmax_new_j = kqmax_new_arr[j];
|
||||||
|
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
|
||||||
|
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||||
|
kqmax[j] = kqmax_new_j;
|
||||||
|
|
||||||
|
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
||||||
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||||
|
KQ[j*D + tid] = val;
|
||||||
|
|
||||||
|
VKQ[j] *= KQ_max_scale;
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k < D; ++k) {
|
||||||
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
VKQ[j] += V_ki*KQ[j*D + k];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
|
float dst_val = VKQ[j_VKQ];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= kqsum[j_VKQ];
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * KQV = dst;
|
||||||
|
ggml_tensor * Q = dst->src[0];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
|
|
||||||
|
GGML_ASSERT(K->type == type_K);
|
||||||
|
GGML_ASSERT(V->type == type_V);
|
||||||
|
|
||||||
|
if (Q->ne[1] == 1) {
|
||||||
|
constexpr int cols_per_block = 1;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] == 2) {
|
||||||
|
constexpr int cols_per_block = 2;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 4) {
|
||||||
|
constexpr int cols_per_block = 4;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_vec_f32_case \
|
||||||
|
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
490
ggml-cuda/fattn-wmma-f16.cuh
Normal file
490
ggml-cuda/fattn-wmma-f16.cuh
Normal file
|
@ -0,0 +1,490 @@
|
||||||
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
|
#if FP16_MMA_AVAILABLE
|
||||||
|
#include <mma.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||||
|
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_ext_f16(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
#if FP16_MMA_AVAILABLE
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||||
|
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||||
|
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||||
|
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||||
|
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||||
|
|
||||||
|
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||||
|
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||||
|
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||||
|
|
||||||
|
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||||
|
constexpr int D_padded = D + 8;
|
||||||
|
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||||
|
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||||
|
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||||
|
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||||
|
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||||
|
|
||||||
|
const int stride_Q = nb01 / sizeof(float);
|
||||||
|
const int stride_KV = nb11 / sizeof(half);
|
||||||
|
|
||||||
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
|
const half2 slope2 = make_half2(slopef, slopef);
|
||||||
|
|
||||||
|
frag_b Q_b[D/16][ncols/frag_n];
|
||||||
|
|
||||||
|
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||||
|
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||||
|
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||||
|
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||||
|
float * KQ_f = (float *) KQ;
|
||||||
|
half2 * KQ2 = (half2 *) KQ;
|
||||||
|
|
||||||
|
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||||
|
float KQ_max_f[ncols/nwarps];
|
||||||
|
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||||
|
half2 KQ_max_h2[ncols/nwarps];
|
||||||
|
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||||
|
}
|
||||||
|
|
||||||
|
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||||
|
half2 * VKQ2 = (half2 *) VKQ;
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D && i >= D) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Iterate over ne11 == previous tokens:
|
||||||
|
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||||
|
// Calculate tile of KQ:
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||||
|
frag_c_KQ KQ_c[ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||||
|
frag_a_K K_a;
|
||||||
|
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Calculate softmax for each KQ column using the current max. value.
|
||||||
|
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||||
|
}
|
||||||
|
|
||||||
|
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||||
|
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||||
|
}
|
||||||
|
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||||
|
|
||||||
|
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||||
|
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||||
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||||
|
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||||
|
}
|
||||||
|
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||||
|
|
||||||
|
float KQ_rowsum_add = 0.0f;
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||||
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||||
|
}
|
||||||
|
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||||
|
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||||
|
}
|
||||||
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||||
|
|
||||||
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||||
|
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||||
|
} else {
|
||||||
|
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||||
|
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||||
|
}
|
||||||
|
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||||
|
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||||
|
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||||
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||||
|
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||||
|
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||||
|
|
||||||
|
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||||
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||||
|
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||||
|
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||||
|
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||||
|
}
|
||||||
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||||
|
|
||||||
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||||
|
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||||
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||||
|
nvcuda::wmma::load_matrix_sync(
|
||||||
|
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||||
|
KQ + j0*(kqar*kqs_padded) + k,
|
||||||
|
kqar*kqs_padded);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||||
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||||
|
|
||||||
|
frag_a_V v_a;
|
||||||
|
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::store_matrix_sync(
|
||||||
|
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||||
|
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||||
|
D_padded, nvcuda::wmma::mem_col_major);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
half2 VKQ_scale;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||||
|
} else {
|
||||||
|
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||||
|
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||||
|
}
|
||||||
|
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j_VKQ = j0 + threadIdx.y;
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
|
||||||
|
float KQ_rowsum_j;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||||
|
} else {
|
||||||
|
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D && i >= D) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= KQ_rowsum_j;
|
||||||
|
}
|
||||||
|
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
float2 dst_meta_val;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||||
|
} else {
|
||||||
|
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||||
|
}
|
||||||
|
dst_meta_val.y = KQ_rowsum_j;
|
||||||
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // FP16_MMA_AVAILABLE
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int get_max_power_of_2(int x) {
|
||||||
|
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||||
|
|
||||||
|
// Number of VKQ rows calculated in parallel:
|
||||||
|
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||||
|
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||||
|
}
|
||||||
|
|
||||||
|
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||||
|
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
|
constexpr int nwarps = 4;
|
||||||
|
|
||||||
|
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||||
|
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||||
|
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||||
|
|
||||||
|
if (4*blocks_num_pb1 < 2*nsm) {
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (2*blocks_num_pb1 < 2*nsm) {
|
||||||
|
constexpr int parallel_blocks = 2;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_wmma_f16_case \
|
||||||
|
<D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
||||||
|
// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
|
@ -4,457 +4,295 @@
|
||||||
#include "fattn-tile-f32.cuh"
|
#include "fattn-tile-f32.cuh"
|
||||||
#include "fattn-vec-f16.cuh"
|
#include "fattn-vec-f16.cuh"
|
||||||
#include "fattn-vec-f32.cuh"
|
#include "fattn-vec-f32.cuh"
|
||||||
|
#include "fattn-wmma-f16.cuh"
|
||||||
#include "fattn.cuh"
|
#include "fattn.cuh"
|
||||||
|
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
|
|
||||||
#if FP16_MMA_AVAILABLE
|
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
#include <mma.h>
|
const ggml_tensor * KQV = dst;
|
||||||
#endif
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
const int32_t precision = KQV->op_params[2];
|
||||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_ext_f16(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int nb21,
|
|
||||||
const int nb22,
|
|
||||||
const int nb23,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
#if FP16_MMA_AVAILABLE
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
if (precision != GGML_PREC_DEFAULT) {
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
switch (Q->ne[0]) {
|
||||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
case 64:
|
||||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
break;
|
||||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
case 80:
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
break;
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
case 96:
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
break;
|
||||||
|
case 112:
|
||||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
break;
|
||||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
break;
|
||||||
constexpr int D_padded = D + 8;
|
case 256:
|
||||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
break;
|
||||||
|
default:
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
GGML_ASSERT(false);
|
||||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
break;
|
||||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
}
|
||||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
} else {
|
||||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
constexpr int cols_per_block = 32;
|
||||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
const int stride_Q = nb01 / sizeof(float);
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||||
const int stride_KV = nb11 / sizeof(half);
|
break;
|
||||||
|
case 80:
|
||||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||||
const half slopeh = __float2half(slopef);
|
break;
|
||||||
const half2 slope2 = make_half2(slopef, slopef);
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||||
frag_b Q_b[D/16][ncols/frag_n];
|
break;
|
||||||
|
case 112:
|
||||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
break;
|
||||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
case 128:
|
||||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
float * KQ_f = (float *) KQ;
|
break;
|
||||||
half2 * KQ2 = (half2 *) KQ;
|
// case 256:
|
||||||
|
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
// break;
|
||||||
float KQ_max_f[ncols/nwarps];
|
default:
|
||||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
GGML_ASSERT(false);
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
||||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
||||||
half2 KQ_max_h2[ncols/nwarps];
|
|
||||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
||||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
|
||||||
}
|
|
||||||
|
|
||||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
|
||||||
half2 * VKQ2 = (half2 *) VKQ;
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D && i >= D) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Iterate over ne11 == previous tokens:
|
|
||||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
|
||||||
// Calculate tile of KQ:
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
|
||||||
frag_c_KQ KQ_c[ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
|
||||||
}
|
|
||||||
#pragma unroll
|
|
||||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
|
||||||
frag_a_K K_a;
|
|
||||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Calculate softmax for each KQ column using the current max. value.
|
|
||||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
|
||||||
}
|
|
||||||
|
|
||||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
|
||||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
|
||||||
}
|
|
||||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
|
||||||
|
|
||||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
|
||||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
|
||||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
||||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
|
||||||
}
|
|
||||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
|
||||||
|
|
||||||
float KQ_rowsum_add = 0.0f;
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
|
||||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
|
||||||
}
|
|
||||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
|
||||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
|
||||||
}
|
|
||||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
||||||
|
|
||||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
||||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
|
||||||
} else {
|
|
||||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
|
||||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
|
||||||
}
|
|
||||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
|
||||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
|
||||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
|
||||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
||||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
|
||||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
|
||||||
|
|
||||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
|
||||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
||||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
|
||||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
|
||||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
|
||||||
}
|
|
||||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
||||||
|
|
||||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
||||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
||||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
||||||
nvcuda::wmma::load_matrix_sync(
|
|
||||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
|
||||||
KQ + j0*(kqar*kqs_padded) + k,
|
|
||||||
kqar*kqs_padded);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
||||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
||||||
|
|
||||||
frag_a_V v_a;
|
|
||||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::store_matrix_sync(
|
|
||||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
|
||||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
|
||||||
D_padded, nvcuda::wmma::mem_col_major);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
half2 VKQ_scale;
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
|
||||||
} else {
|
|
||||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
|
|
||||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
|
||||||
#pragma unroll
|
|
||||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
|
||||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
|
||||||
}
|
|
||||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
__syncthreads();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
constexpr int cols_per_block = 8;
|
||||||
const int j_VKQ = j0 + threadIdx.y;
|
switch (Q->ne[0]) {
|
||||||
if (ic0 + j_VKQ >= ne01) {
|
case 64:
|
||||||
return;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
}
|
break;
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
float KQ_rowsum_j;
|
break;
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
case 128:
|
||||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
} else {
|
break;
|
||||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
case 256:
|
||||||
}
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
#pragma unroll
|
default:
|
||||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
GGML_ASSERT(false);
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D && i >= D) {
|
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= KQ_rowsum_j;
|
|
||||||
}
|
|
||||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
float2 dst_meta_val;
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
|
||||||
} else {
|
|
||||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
|
||||||
}
|
|
||||||
dst_meta_val.y = KQ_rowsum_j;
|
|
||||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 32) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 80:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 112:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 80:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 112:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||||
|
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
||||||
|
return; \
|
||||||
|
} \
|
||||||
|
|
||||||
|
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * Q = dst->src[1];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
#else
|
#else
|
||||||
NO_DEVICE_CODE;
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
#endif // FP16_MMA_AVAILABLE
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
|
on_no_fattn_vec_case(Q->ne[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr int get_max_power_of_2(int x) {
|
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||||
}
|
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
|
||||||
|
return; \
|
||||||
|
} \
|
||||||
|
|
||||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
ggml_tensor * Q = dst->src[1];
|
||||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
ggml_tensor * K = dst->src[1];
|
||||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
// Number of VKQ rows calculated in parallel:
|
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
}
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
|
||||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
|
||||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
|
||||||
|
|
||||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||||
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||||
const ggml_tensor * Q = dst->src[0];
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
|
||||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
|
||||||
if (4*blocks_num_pb1 < 2*nsm) {
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||||
constexpr int parallel_blocks = 4;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||||
return;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||||
}
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
if (2*blocks_num_pb1 < 2*nsm) {
|
|
||||||
constexpr int parallel_blocks = 2;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||||
return;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||||
}
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
constexpr int parallel_blocks = 1;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#else
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
|
on_no_fattn_vec_case(Q->ne[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
@ -472,7 +310,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||||
if (cc >= CC_OFFSET_AMD || quantized_KV) {
|
if (cc >= CC_OFFSET_AMD || quantized_KV) {
|
||||||
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
} else {
|
} else {
|
||||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
}
|
}
|
||||||
|
@ -490,156 +328,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||||
|
|
||||||
if (!fp16_mma_available(cc)) {
|
if (!fp16_mma_available(cc)) {
|
||||||
if (Q->ne[1] <= 8) {
|
if (Q->ne[1] <= 8) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
} else {
|
} else {
|
||||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (precision != GGML_PREC_DEFAULT) {
|
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
||||||
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
|
if (precision == GGML_PREC_DEFAULT) {
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
|
return;
|
||||||
|
} else if(Q->ne[0] <= 128) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
|
||||||
constexpr int cols_per_block = 16;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
constexpr int cols_per_block = 32;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
// case 256:
|
|
||||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
// break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 32) {
|
|
||||||
constexpr int cols_per_block = 16;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 32;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
56
ggml-cuda/template-instances/generate_cu_files.py
Normal file
56
ggml-cuda/template-instances/generate_cu_files.py
Normal file
|
@ -0,0 +1,56 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
from glob import glob
|
||||||
|
import os
|
||||||
|
|
||||||
|
TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
|
||||||
|
|
||||||
|
SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f{vkq_size}.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
|
||||||
|
"""
|
||||||
|
|
||||||
|
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-wmma-f16.cuh"
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
|
||||||
|
|
||||||
|
def get_short_name(long_quant_name):
|
||||||
|
return long_quant_name.replace("GGML_TYPE_", "").lower()
|
||||||
|
|
||||||
|
def get_head_sizes(type_k, type_v):
|
||||||
|
if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
|
||||||
|
return [64, 128, 256]
|
||||||
|
if type_k == "GGML_TYPE_F16":
|
||||||
|
return [64, 128]
|
||||||
|
return [128]
|
||||||
|
|
||||||
|
for filename in glob("*.cu"):
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
for vkq_size in [16, 32]:
|
||||||
|
for type_k in TYPES_KV:
|
||||||
|
for type_v in TYPES_KV:
|
||||||
|
for head_size in get_head_sizes(type_k, type_v):
|
||||||
|
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
|
||||||
|
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
|
||||||
|
|
||||||
|
for kq_acc_t in ["half", "float"]:
|
||||||
|
for cols_per_block in [8, 16, 32]:
|
||||||
|
if kq_acc_t == "float" and cols_per_block == 8:
|
||||||
|
continue
|
||||||
|
|
||||||
|
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
|
||||||
|
f.write(SOURCE_FATTN_WMMA_START)
|
||||||
|
|
||||||
|
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||||
|
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
|
||||||
|
continue
|
||||||
|
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
|
||||||
|
continue
|
||||||
|
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
|
Loading…
Add table
Add a link
Reference in a new issue