examples : remove embd-input and gptneox-wip
This commit is contained in:
parent
6e6587656f
commit
84ed48b473
16 changed files with 1 additions and 4075 deletions
9
Makefile
9
Makefile
|
@ -1,7 +1,7 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server embd-input-test gguf llama-bench llava baby-llama beam-search \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench llava baby-llama beam-search \
|
||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
|
@ -608,13 +608,6 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.
|
|||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
|
@ -962,7 +962,6 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
|
|||
|
||||
- [main](./examples/main/README.md)
|
||||
- [server](./examples/server/README.md)
|
||||
- [embd-input](./examples/embd-input/README.md)
|
||||
- [jeopardy](./examples/jeopardy/README.md)
|
||||
- [BLIS](./docs/BLIS.md)
|
||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||
|
|
|
@ -28,7 +28,6 @@ else()
|
|||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(beam-search)
|
||||
|
|
4
examples/embd-input/.gitignore
vendored
4
examples/embd-input/.gitignore
vendored
|
@ -1,4 +0,0 @@
|
|||
PandaGPT
|
||||
MiniGPT-4
|
||||
*.pth
|
||||
|
|
@ -1,17 +0,0 @@
|
|||
set(TARGET embdinput)
|
||||
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET embd-input-test)
|
||||
add_executable(${TARGET} embd-input-test.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
|
@ -1,63 +0,0 @@
|
|||
### Examples for input embedding directly
|
||||
|
||||
## Requirement
|
||||
build `libembdinput.so`
|
||||
run the following comman in main dir (../../).
|
||||
```
|
||||
make
|
||||
```
|
||||
|
||||
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
||||
|
||||
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
||||
2. Convert it to ggml format.
|
||||
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
||||
|
||||
```
|
||||
import torch
|
||||
|
||||
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
||||
pth_path = "./examples/embd-input/llava_projection.pth"
|
||||
|
||||
dic = torch.load(bin_path)
|
||||
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
||||
torch.save({k: dic[k] for k in used_key}, pth_path)
|
||||
```
|
||||
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
||||
|
||||
|
||||
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
||||
|
||||
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
||||
The `adapter_config.json` is
|
||||
```
|
||||
{
|
||||
"peft_type": "LORA",
|
||||
"fan_in_fan_out": false,
|
||||
"bias": null,
|
||||
"modules_to_save": null,
|
||||
"r": 32,
|
||||
"lora_alpha": 32,
|
||||
"lora_dropout": 0.1,
|
||||
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
||||
}
|
||||
```
|
||||
2. Papare the `vicuna` v0 model.
|
||||
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
||||
4. Clone the PandaGPT source.
|
||||
```
|
||||
git clone https://github.com/yxuansu/PandaGPT
|
||||
```
|
||||
5. Install the requirement of PandaGPT.
|
||||
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
||||
|
||||
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
||||
|
||||
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
||||
2. Clone the MiniGPT-4 source.
|
||||
```
|
||||
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
||||
```
|
||||
3. Install the requirement of PandaGPT.
|
||||
4. Papare the `vicuna` v0 model.
|
||||
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|
|
@ -1,221 +0,0 @@
|
|||
#include "build-info.h"
|
||||
#include "common.h"
|
||||
#include "embd-input.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
|
||||
extern "C" {
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = uint32_t(time(NULL));
|
||||
}
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
g_ctx = &ctx;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
struct MyModel * ret = new MyModel();
|
||||
ret->ctx = ctx;
|
||||
ret->params = params;
|
||||
ret->n_past = 0;
|
||||
// printf("ctx: %d\n", ret->ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_mymodel(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
delete mymodel;
|
||||
}
|
||||
|
||||
|
||||
bool eval_float(void * model, float * input, int N){
|
||||
MyModel * mymodel = (MyModel*)model;
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_emb = llama_n_embd(llama_get_model(ctx));
|
||||
int n_past = mymodel->n_past;
|
||||
int n_batch = N; // params.n_batch;
|
||||
|
||||
for (int i = 0; i < (int) N; i += n_batch) {
|
||||
int n_eval = (int) N - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
||||
MyModel * mymodel = (MyModel* )model;
|
||||
llama_context * ctx;
|
||||
ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_past = mymodel->n_past;
|
||||
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_id(struct MyModel* mymodel, int id) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(mymodel, tokens);
|
||||
}
|
||||
|
||||
bool eval_string(struct MyModel * mymodel,const char* str){
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
||||
eval_tokens(mymodel, embd_inp);
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_token sampling_id(struct MyModel* mymodel) {
|
||||
llama_context* ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
llama_sampling_params & sparams = params.sparams;
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = sparams.temp;
|
||||
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
|
||||
const float top_p = sparams.top_p;
|
||||
const float tfs_z = sparams.tfs_z;
|
||||
const float typical_p = sparams.typical_p;
|
||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
// const float repeat_penalty = params.repeat_penalty;
|
||||
// const float alpha_presence = params.presence_penalty;
|
||||
// const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = sparams.mirostat;
|
||||
const float mirostat_tau = sparams.mirostat_tau;
|
||||
const float mirostat_eta = sparams.mirostat_eta;
|
||||
// const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
const char * sampling(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
int id = sampling_id(mymodel);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(ctx)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx, id);
|
||||
}
|
||||
eval_id(mymodel, id);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
}
|
|
@ -1,35 +0,0 @@
|
|||
#include "embd-input.h"
|
||||
#include <stdlib.h>
|
||||
#include <random>
|
||||
#include <string.h>
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
auto mymodel = create_mymodel(argc, argv);
|
||||
int N = 10;
|
||||
int max_tgt_len = 500;
|
||||
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
|
||||
|
||||
// add random float embd to test evaluation
|
||||
float * data = new float[N*n_embd];
|
||||
std::default_random_engine e;
|
||||
std::uniform_real_distribution<float> u(0,1);
|
||||
for (int i=0;i<N*n_embd;i++) {
|
||||
data[i] = u(e);
|
||||
}
|
||||
|
||||
eval_string(mymodel, "user: what is the color of the flag of UN?");
|
||||
eval_float(mymodel, data, N);
|
||||
eval_string(mymodel, "assistant:");
|
||||
eval_string(mymodel, mymodel->params.prompt.c_str());
|
||||
const char* tmp;
|
||||
for (int i=0; i<max_tgt_len; i++) {
|
||||
tmp = sampling(mymodel);
|
||||
if (strcmp(tmp, "</s>")==0) break;
|
||||
printf("%s", tmp);
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
free_mymodel(mymodel);
|
||||
return 0;
|
||||
}
|
|
@ -1,27 +0,0 @@
|
|||
#ifndef _EMBD_INPUT_H_
|
||||
#define _EMBD_INPUT_H_ 1
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
typedef struct MyModel {
|
||||
llama_context* ctx;
|
||||
gpt_params params;
|
||||
int n_past = 0;
|
||||
} MyModel;
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv);
|
||||
|
||||
bool eval_float(void* model, float* input, int N);
|
||||
bool eval_tokens(void* model, std::vector<llama_token> tokens);
|
||||
bool eval_id(struct MyModel* mymodel, int id);
|
||||
bool eval_string(struct MyModel* mymodel, const char* str);
|
||||
const char * sampling(struct MyModel* mymodel);
|
||||
llama_token sampling_id(struct MyModel* mymodel);
|
||||
void free_mymodel(struct MyModel* mymodel);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -1,72 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import ctypes
|
||||
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
libc = cdll.LoadLibrary("./libembdinput.so")
|
||||
libc.sampling.restype=c_char_p
|
||||
libc.create_mymodel.restype=c_void_p
|
||||
libc.eval_string.argtypes=[c_void_p, c_char_p]
|
||||
libc.sampling.argtypes=[c_void_p]
|
||||
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
|
||||
|
||||
|
||||
class MyModel:
|
||||
def __init__(self, args):
|
||||
argc = len(args)
|
||||
c_str = [c_char_p(i.encode()) for i in args]
|
||||
args_c = (c_char_p * argc)(*c_str)
|
||||
self.model = c_void_p(libc.create_mymodel(argc, args_c))
|
||||
self.max_tgt_len = 512
|
||||
self.print_string_eval = True
|
||||
|
||||
def __del__(self):
|
||||
libc.free_mymodel(self.model)
|
||||
|
||||
def eval_float(self, x):
|
||||
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
|
||||
|
||||
def eval_string(self, x):
|
||||
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
|
||||
if self.print_string_eval:
|
||||
print(x)
|
||||
|
||||
def eval_token(self, x):
|
||||
libc.eval_id(self.model, x)
|
||||
|
||||
def sampling(self):
|
||||
s = libc.sampling(self.model)
|
||||
return s
|
||||
|
||||
def stream_generate(self, end="</s>"):
|
||||
ret = b""
|
||||
end = end.encode()
|
||||
for _ in range(self.max_tgt_len):
|
||||
tmp = self.sampling()
|
||||
ret += tmp
|
||||
yield tmp
|
||||
if ret.endswith(end):
|
||||
break
|
||||
|
||||
def generate_with_print(self, end="</s>"):
|
||||
ret = b""
|
||||
for i in self.stream_generate(end=end):
|
||||
ret += i
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
||||
print("")
|
||||
return ret.decode(errors="replace")
|
||||
|
||||
|
||||
def generate(self, end="</s>"):
|
||||
text = b"".join(self.stream_generate(end=end))
|
||||
return text.decode(errors="replace")
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
|
||||
model.eval_string("""user: what is the color of the flag of UN?""")
|
||||
x = np.random.random((5120,10))# , dtype=np.float32)
|
||||
model.eval_float(x)
|
||||
model.eval_string("""assistant:""")
|
||||
for i in model.generate():
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
|
@ -1,71 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor
|
||||
from PIL import Image
|
||||
|
||||
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
|
||||
vision_tower = "openai/clip-vit-large-patch14"
|
||||
select_hidden_state_layer = -2
|
||||
# (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
image_token_len = (224//14)**2
|
||||
|
||||
class Llava:
|
||||
def __init__(self, args):
|
||||
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||
self.mm_projector = nn.Linear(1024, 5120)
|
||||
self.model = MyModel(["main", *args])
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)
|
||||
self.mm_projector.load_state_dict({
|
||||
"weight": state["model.mm_projector.weight"],
|
||||
"bias": state["model.mm_projector.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
|
||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||
image_feature = select_hidden_state[:, 1:]
|
||||
embd_image = self.mm_projector(image_feature)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_token(32003-2) # im_start
|
||||
self.model.eval_float(embd_image.T)
|
||||
for i in range(image_token_len-embd_image.shape[0]):
|
||||
self.model.eval_token(32003-3) # im_patch
|
||||
self.model.eval_token(32003-1) # im_end
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
# model form liuhaotian/LLaVA-13b-delta-v1-1
|
||||
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
|
||||
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
|
||||
# Also here can use pytorch_model-00003-of-00003.bin directly.
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"llava_projection.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
respose
|
||||
a.chat("what is the color of it?")
|
||||
|
||||
|
||||
|
|
@ -1,129 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
|
||||
sys.path.insert(0, minigpt4_path)
|
||||
from minigpt4.models.blip2 import Blip2Base
|
||||
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
|
||||
|
||||
|
||||
class MiniGPT4(Blip2Base):
|
||||
"""
|
||||
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
|
||||
"""
|
||||
def __init__(self,
|
||||
args,
|
||||
vit_model="eva_clip_g",
|
||||
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
||||
img_size=224,
|
||||
drop_path_rate=0,
|
||||
use_grad_checkpoint=False,
|
||||
vit_precision="fp32",
|
||||
freeze_vit=True,
|
||||
freeze_qformer=True,
|
||||
num_query_token=32,
|
||||
llama_model="",
|
||||
prompt_path="",
|
||||
prompt_template="",
|
||||
max_txt_len=32,
|
||||
end_sym='\n',
|
||||
low_resource=False, # use 8 bit and put vit in cpu
|
||||
device_8bit=0
|
||||
):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.low_resource = low_resource
|
||||
self.preprocessor = Blip2ImageEvalProcessor(img_size)
|
||||
|
||||
print('Loading VIT')
|
||||
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
||||
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
||||
)
|
||||
print('Loading VIT Done')
|
||||
print('Loading Q-Former')
|
||||
self.Qformer, self.query_tokens = self.init_Qformer(
|
||||
num_query_token, self.visual_encoder.num_features
|
||||
)
|
||||
self.Qformer.cls = None
|
||||
self.Qformer.bert.embeddings.word_embeddings = None
|
||||
self.Qformer.bert.embeddings.position_embeddings = None
|
||||
for layer in self.Qformer.bert.encoder.layer:
|
||||
layer.output = None
|
||||
layer.intermediate = None
|
||||
self.load_from_pretrained(url_or_filename=q_former_model)
|
||||
print('Loading Q-Former Done')
|
||||
self.llama_proj = nn.Linear(
|
||||
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
|
||||
)
|
||||
self.max_txt_len = max_txt_len
|
||||
self.end_sym = end_sym
|
||||
self.model = MyModel(["main", *args])
|
||||
# system prompt
|
||||
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
|
||||
"You will be able to see the image once I provide it to you. Please answer my questions."
|
||||
"###")
|
||||
|
||||
def encode_img(self, image):
|
||||
image = self.preprocessor(image)
|
||||
image = image.unsqueeze(0)
|
||||
device = image.device
|
||||
if self.low_resource:
|
||||
self.vit_to_cpu()
|
||||
image = image.to("cpu")
|
||||
|
||||
with self.maybe_autocast():
|
||||
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
||||
|
||||
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
||||
query_output = self.Qformer.bert(
|
||||
query_embeds=query_tokens,
|
||||
encoder_hidden_states=image_embeds,
|
||||
encoder_attention_mask=image_atts,
|
||||
return_dict=True,
|
||||
)
|
||||
|
||||
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
||||
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
||||
return inputs_llama
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)["model"]
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("Human: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.encode_img(image)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("Human: <Img>")
|
||||
self.model.eval_float(embd_image.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"pretrained_minigpt4.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
a.chat("what is the color of it?")
|
|
@ -1,99 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
# use PandaGPT path
|
||||
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
|
||||
imagebind_ckpt_path = "./models/panda_gpt/"
|
||||
|
||||
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
|
||||
from ImageBind.models import imagebind_model
|
||||
from ImageBind import data
|
||||
|
||||
ModalityType = imagebind_model.ModalityType
|
||||
max_tgt_len = 400
|
||||
|
||||
class PandaGPT:
|
||||
def __init__(self, args):
|
||||
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
|
||||
self.visual_encoder.eval()
|
||||
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
|
||||
self.max_tgt_len = max_tgt_len
|
||||
self.model = MyModel(["main", *args])
|
||||
self.generated_text = ""
|
||||
self.device = "cpu"
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def eval_inputs(self, inputs):
|
||||
self.model.eval_string("<Img>")
|
||||
embds = self.extract_multimoal_feature(inputs)
|
||||
for i in embds:
|
||||
self.model.eval_float(i.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
|
||||
def chat(self, question):
|
||||
return self.chat_with_image(None, question)
|
||||
|
||||
def chat_with_image(self, inputs, question):
|
||||
if self.generated_text == "":
|
||||
self.model.eval_string("###")
|
||||
self.model.eval_string(" Human: ")
|
||||
if inputs:
|
||||
self.eval_inputs(inputs)
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
ret = self.model.generate_with_print(end="###")
|
||||
self.generated_text += ret
|
||||
return ret
|
||||
|
||||
def extract_multimoal_feature(self, inputs):
|
||||
features = []
|
||||
for key in ["image", "audio", "video", "thermal"]:
|
||||
if key + "_paths" in inputs:
|
||||
embeds = self.encode_data(key, inputs[key+"_paths"])
|
||||
features.append(embeds)
|
||||
return features
|
||||
|
||||
def encode_data(self, data_type, data_paths):
|
||||
|
||||
type_map = {
|
||||
"image": ModalityType.VISION,
|
||||
"audio": ModalityType.AUDIO,
|
||||
"video": ModalityType.VISION,
|
||||
"thermal": ModalityType.THERMAL,
|
||||
}
|
||||
load_map = {
|
||||
"image": data.load_and_transform_vision_data,
|
||||
"audio": data.load_and_transform_audio_data,
|
||||
"video": data.load_and_transform_video_data,
|
||||
"thermal": data.load_and_transform_thermal_data
|
||||
}
|
||||
|
||||
load_function = load_map[data_type]
|
||||
key = type_map[data_type]
|
||||
|
||||
inputs = {key: load_function(data_paths, self.device)}
|
||||
with torch.no_grad():
|
||||
embeddings = self.visual_encoder(inputs)
|
||||
embeds = embeddings[key]
|
||||
embeds = self.llama_proj(embeds).cpu().numpy()
|
||||
return embeds
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
|
||||
a.load_projection("./models/panda_gpt/adapter_model.bin")
|
||||
a.chat_with_image(
|
||||
{"image_paths": ["./media/llama1-logo.png"]},
|
||||
"what is the text in the picture? 'llama' or 'lambda'?")
|
||||
a.chat("what is the color of it?")
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue