Merge 3db5058dd3
into 751fcfc6c3
This commit is contained in:
commit
8515cfa822
2 changed files with 136 additions and 40 deletions
|
@ -21207,7 +21207,8 @@ int32_t llama_tokenize(
|
|||
return res.size();
|
||||
}
|
||||
|
||||
static std::string llama_decode_text(const std::string & text) {
|
||||
// errors: 'c': copy, 'i': ignore, 'r': replace 0xFFFD, 'v': verbose
|
||||
static std::string llama_decode_text(const std::string & text, const char errors = 'v') {
|
||||
std::string decoded_text;
|
||||
|
||||
const auto cpts = unicode_cpts_from_utf8(text);
|
||||
|
@ -21216,11 +21217,21 @@ static std::string llama_decode_text(const std::string & text) {
|
|||
try {
|
||||
decoded_text += unicode_utf8_to_byte(utf8);
|
||||
} catch (const std::out_of_range & /*e*/) {
|
||||
decoded_text += "[UNK_BYTE_0x";
|
||||
for (const auto c : utf8) {
|
||||
decoded_text += format("%02x", (uint8_t) c);
|
||||
switch (errors) {
|
||||
case 'c':
|
||||
decoded_text += utf8; // copy original
|
||||
break;
|
||||
case 'r':
|
||||
decoded_text += "\xEF\xBF\xBD"; // 0xFFFD REPLACEMENT CHARACTER
|
||||
break;
|
||||
case 'v':
|
||||
decoded_text += format("[UNK_BYTE_0x%02X]", cpt);
|
||||
break;
|
||||
case 'i':
|
||||
default:
|
||||
// ignore
|
||||
break;
|
||||
}
|
||||
decoded_text += text + "]";
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -21286,7 +21297,7 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
|||
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
||||
return _try_copy(token_text.data(), token_text.size());
|
||||
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
||||
std::string result = llama_decode_text(token_text);
|
||||
std::string result = llama_decode_text(token_text, 'c'); // copy on error //TODO: use a tokenizer variable
|
||||
return _try_copy(result.data(), result.size());
|
||||
}
|
||||
break;
|
||||
|
|
|
@ -116,9 +116,25 @@ class LibLlamaModel:
|
|||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
|
||||
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
vocab: list[str] = []
|
||||
num_tokens = self.lib.llama_n_vocab(self.model)
|
||||
for id in range(num_tokens):
|
||||
if detokenize:
|
||||
text = self.detokenize([id], remove_special=False, unparse_special=True)
|
||||
else:
|
||||
text = self.lib.llama_token_get_text(self.model, id)
|
||||
text = self.ffi.string(text)
|
||||
text = str(text, encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
|
||||
vocab.append(text)
|
||||
return vocab
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -129,7 +145,7 @@ class Tokenizer:
|
|||
class TokenizerGroundtruth (Tokenizer):
|
||||
|
||||
def __init__(self, dir_tokenizer: str):
|
||||
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer, trust_remote_code=False)
|
||||
# guess BOS and EOS
|
||||
ids = self.encode("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
|
@ -138,15 +154,24 @@ class TokenizerGroundtruth (Tokenizer):
|
|||
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
|
||||
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
|
||||
# build vocab
|
||||
tokens = list(self.model.get_vocab().values())
|
||||
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
|
||||
self.vocab = list(sorted(self.vocab))
|
||||
self.vocab = self.get_vocab(detokenize=True)
|
||||
# tokens and lists
|
||||
self.special_tokens = list(self.model.all_special_tokens)
|
||||
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
|
||||
self.special_tokens = [self.vocab[i] for i in sorted(self.model.all_special_ids)]
|
||||
self.added_tokens = [self.vocab[i] for i in sorted(self.model.added_tokens_encoder.values())]
|
||||
self.bos_token = self.model.bos_token
|
||||
self.eos_token = self.model.eos_token
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
max_token_id = max(self.model.get_vocab().values())
|
||||
if detokenize:
|
||||
ids = list(range(max_token_id + 1))
|
||||
vocab = self.model.batch_decode(ids, skip_special_tokens=False)
|
||||
else:
|
||||
vocab = [None] * (max_token_id + 1)
|
||||
for text, id in self.model.get_vocab().items():
|
||||
vocab[id] = text
|
||||
return vocab
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.encode(text, add_special_tokens=True)
|
||||
|
||||
|
@ -163,6 +188,9 @@ class TokenizerLlamaCpp (Tokenizer):
|
|||
self.libllama = LibLlama()
|
||||
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
|
||||
def get_vocab(self, detokenize=False) -> list[str]:
|
||||
return self.model.get_vocab(detokenize)
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.tokenize(text, add_special=True, parse_special=True)
|
||||
|
||||
|
@ -278,7 +306,7 @@ def generator_apostrophe() -> Iterator[str]:
|
|||
|
||||
|
||||
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
|
||||
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
|
||||
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t", " "]
|
||||
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
|
||||
for token in all_tokens:
|
||||
for lstrip in WHITESPACES:
|
||||
|
@ -409,14 +437,6 @@ def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100
|
|||
|
||||
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
if a != b:
|
||||
return i
|
||||
if len(ids1) == len(ids2):
|
||||
return -1
|
||||
return min(len(ids1), len(ids2))
|
||||
|
||||
def check_detokenizer(text: str, text1: str, text2: str) -> bool:
|
||||
if text1 == text2: # equal to TokenizerGroundtruth?
|
||||
return True
|
||||
|
@ -436,6 +456,7 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
|
|||
t_start = time.perf_counter()
|
||||
encode_errors = 0
|
||||
decode_errors = 0
|
||||
total_tests = 0
|
||||
MAX_ERRORS = 10
|
||||
|
||||
logger.info("%s: %s" % (generator.__qualname__, "ini"))
|
||||
|
@ -455,21 +476,44 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
|
|||
t_encode2 += t2 - t1
|
||||
t_decode1 += t3 - t2
|
||||
t_decode2 += t4 - t3
|
||||
if encode_errors < MAX_ERRORS and ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||||
# compare
|
||||
encode_ok = ids1 == ids2
|
||||
decode_ok = check_detokenizer(text, text1, text2)
|
||||
encode_errors += not encode_ok
|
||||
decode_errors += not decode_ok
|
||||
total_tests += 1
|
||||
if (encode_errors < MAX_ERRORS and not encode_ok) or (decode_errors < MAX_ERRORS and not decode_ok):
|
||||
def _compare(text: str):
|
||||
ids1 = tokenizer1.encode(text)
|
||||
ids2 = tokenizer2.encode(text)
|
||||
text1 = tokenizer1.decode(ids1)
|
||||
text2 = tokenizer2.decode(ids1)
|
||||
encode_ok = ids1 == ids2
|
||||
decode_ok = check_detokenizer(text, text1, text2)
|
||||
ok = encode_ok and decode_ok
|
||||
return ok, ids1, ids2, text1, text2
|
||||
a, b = 0, len(text)
|
||||
for step in [64, 32, 16, 8, 4, 2, 1]:
|
||||
while a < b:
|
||||
t = max(a, b - step)
|
||||
if _compare(text[a : t])[0]:
|
||||
break
|
||||
b = t
|
||||
for step in [64, 32, 16, 8, 4, 2, 1]:
|
||||
while a < b:
|
||||
t = min(a + step, b)
|
||||
if _compare(text[t : b])[0]:
|
||||
break
|
||||
a = t
|
||||
ok, ids1, ids2, text1, text2 = _compare(text[a : b])
|
||||
assert a <= b and not ok
|
||||
logger.error(" Text:" + repr(text[a : b]))
|
||||
logger.error(" " + " ".join(repr(x) + ":" + hex(ord(x)) for x in text[a : b]))
|
||||
logger.error(" Expected: " + str(ids1))
|
||||
logger.error(" Result: " + str(ids2))
|
||||
encode_errors += 1
|
||||
logger.error(" Expected: " + " ".join(repr(x) + ":" + hex(ord(x)) for x in text1))
|
||||
logger.error(" Result: " + " ".join(repr(x) + ":" + hex(ord(x)) for x in text2))
|
||||
logger.error(f" {encode_errors=}")
|
||||
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
|
||||
i = find_first_mismatch(text1, text2)
|
||||
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
|
||||
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
|
||||
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
|
||||
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
|
||||
decode_errors += 1
|
||||
logger.error(f" {decode_errors=}")
|
||||
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
|
||||
logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
|
||||
|
@ -480,6 +524,44 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
|
|||
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
|
||||
|
||||
|
||||
def compare_vocabs(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp):
|
||||
|
||||
MAX_PRINT_ERRORS = 10
|
||||
|
||||
logger.info("compare_vocabs: ini")
|
||||
|
||||
t_start = time.perf_counter()
|
||||
|
||||
for detokenize in (False, True):
|
||||
vocab1 = tokenizer1.get_vocab(detokenize)
|
||||
vocab2 = tokenizer2.get_vocab(detokenize)
|
||||
if vocab1 != vocab2:
|
||||
num_errors = 0
|
||||
for i in range(max(len(vocab1), len(vocab2))):
|
||||
text1 = vocab1[i] if i < len(vocab1) else None
|
||||
text2 = vocab2[i] if i < len(vocab2) else None
|
||||
if True: #WIP: SentencePiece adds more unused tokens than AutoTokenizer ?
|
||||
if text1 is None:
|
||||
if not text2 or text2.startswith('[PAD'): # is unused ? #TODO: use toktypes
|
||||
text2 = None
|
||||
else:
|
||||
#TODO: is "UNUSED_TOKEN_" valid for all models ?
|
||||
text1 = text1.replace("[UNUSED_TOKEN_", "[PAD")
|
||||
#if text1 is None or text1.startswith("[UNUSED_TOKEN_"): # is unused ?
|
||||
# text1 = ""
|
||||
#if text2 is None or text2.startswith('[PAD'): # is unused ?
|
||||
# text2 = ""
|
||||
if text1 != text2:
|
||||
num_errors += 1
|
||||
if num_errors < MAX_PRINT_ERRORS:
|
||||
logger.error(f" {detokenize=} id={i} expected={repr(text1)} result={repr(text2)}")
|
||||
if num_errors:
|
||||
logger.error(f" {num_errors=}")
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info(f"compare_vocabs: end, {t_total=:.3f}")
|
||||
|
||||
|
||||
def main(argv: list[str] | None = None):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
|
||||
|
@ -493,13 +575,16 @@ def main(argv: list[str] | None = None):
|
|||
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
|
||||
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
|
||||
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||||
compare_vocabs(tokenizer1, tokenizer2)
|
||||
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_representative(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue