minicpm working without uhd
This commit is contained in:
parent
c0d93dd509
commit
8586d23c8a
9 changed files with 77 additions and 2 deletions
|
@ -2339,6 +2339,7 @@ class MiniCPMVModel(Qwen2Model):
|
|||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
proj_type: gguf.constants.CLIPProjectorType | None
|
||||
resampler_n_embd = 0
|
||||
tok_embd_tensor: Tensor | None = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
@ -2361,6 +2362,8 @@ class MiniCPMVModel(Qwen2Model):
|
|||
for tname, tensor in self.get_tensors():
|
||||
if tname == "resampler.ln_post.bias":
|
||||
self.resampler_n_embd = tensor.shape[0]
|
||||
if tname.endswith("embed_tokens.weight"):
|
||||
self.tok_embd_tensor = tensor
|
||||
if self.resampler_n_embd < 2:
|
||||
raise ValueError("Failed to detect resampler embedding size")
|
||||
else:
|
||||
|
@ -2372,6 +2375,16 @@ class MiniCPMVModel(Qwen2Model):
|
|||
self.hparams["vision_feature_layer"] = 0
|
||||
self.v_tensor_map = gguf.get_tensor_name_map(self.vision_arch, self.vparams["num_hidden_layers"])
|
||||
|
||||
def get_embd_of_tokens(self, map_token_to_tensor_name: Iterable[tuple[str, str]]) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.tok_embd_tensor is None:
|
||||
raise ValueError("Token embedding tensor not found")
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
for token, tensor_name in map_token_to_tensor_name:
|
||||
tok_id = tokenizer.get_vocab()[token]
|
||||
row = self.tok_embd_tensor[tok_id]
|
||||
yield tensor_name, row
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
# For vision model
|
||||
|
@ -2388,6 +2401,14 @@ class MiniCPMVModel(Qwen2Model):
|
|||
self.format_tensor_name(gguf.MODEL_TENSOR.V_RESMPL_POS_EMBD_K, is_vision=True),
|
||||
torch.from_numpy(self._get_2d_sincos_pos_embed(self.resampler_n_embd, (70, 70)))
|
||||
)
|
||||
added_tokens = [
|
||||
("<image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMAGE ] + ".weight"),
|
||||
("</image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_IMAGE] + ".weight"),
|
||||
("<slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_SLICE ] + ".weight"),
|
||||
("</slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_SLICE] + ".weight"),
|
||||
]
|
||||
for tensor_name, tensor in self.get_embd_of_tokens(added_tokens):
|
||||
yield tensor_name, tensor
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
@ -2404,6 +2425,7 @@ class MiniCPMVModel(Qwen2Model):
|
|||
name_k = name.replace("in_proj_", "in_proj_k.") # in_proj_k.(weight|bias)
|
||||
name_v = name.replace("in_proj_", "in_proj_v.") # in_proj_v.(weight|bias)
|
||||
return [
|
||||
# TODO: permute these
|
||||
(self.map_tensor_name(name_q), split_tensor[0]),
|
||||
(self.map_tensor_name(name_k), split_tensor[1]),
|
||||
(self.map_tensor_name(name_v), split_tensor[2]),
|
||||
|
@ -2413,6 +2435,9 @@ class MiniCPMVModel(Qwen2Model):
|
|||
if name == "resampler.proj" or name == "resampler.query":
|
||||
name += ".weight"
|
||||
|
||||
if name.startswith("resampler.proj"):
|
||||
data_torch = data_torch.transpose(-1, -2).contiguous()
|
||||
|
||||
if "post_layernorm" in name:
|
||||
return [] # skip post_layernorm
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue