Add [UNTESTED] Baichuan support
This commit is contained in:
parent
0ff237105d
commit
8618b4e74c
1 changed files with 183 additions and 0 deletions
183
model.py
183
model.py
|
@ -8,7 +8,9 @@ import contextlib
|
|||
import numpy as np
|
||||
|
||||
from pathlib import Path
|
||||
from typing import TypeAlias, Any
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
class Model:
|
||||
def __init__(self, dir_model: Path, ftype: int, fname_out: Path):
|
||||
|
@ -43,6 +45,8 @@ class Model:
|
|||
return gguf.MODEL_ARCH.BLOOM
|
||||
if arch == "MPTForCausalLM":
|
||||
return gguf.MODEL_ARCH.MPT
|
||||
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return gguf.MODEL_ARCH.BAICHUAN
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
def set_vocab(self):
|
||||
|
@ -174,6 +178,8 @@ class Model:
|
|||
return BloomModel
|
||||
if model_architecture == "MPTForCausalLM":
|
||||
return MPTModel
|
||||
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return BaichuanModel
|
||||
return Model
|
||||
|
||||
class StableLMModel(Model):
|
||||
|
@ -288,3 +294,180 @@ class MPTModel(Model):
|
|||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||
|
||||
class BaichuanModel(Model):
|
||||
def set_vocab(self):
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = self.dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
vocab_size = self.hparams.get('vocab_size')
|
||||
if vocab_size is None:
|
||||
vocab_size = tokenizer.vocab_size()
|
||||
|
||||
for i in range(vocab_size):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab = len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in self.hparams:
|
||||
head_count_kv = self.hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in self.hparams:
|
||||
hf_repo = self.hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
ctx_length = 0
|
||||
if "max_sequence_length" in self.hparams:
|
||||
ctx_length = self.hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in self.hparams:
|
||||
ctx_length = self.hparams["max_position_embeddings"]
|
||||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in self.hparams and self.hparams["rope_scaling"] != None and "factor" in self.hparams["rope_scaling"]:
|
||||
if "type" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"]["type"] == "linear":
|
||||
self.gguf_writer.add_rope_scale_linear(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
def _reverse_hf_permute(self, weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def _reverse_hf_permute_part(self, weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return (self._reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
||||
|
||||
def _reverse_hf_part(self, weights: NDArray, n_part: int) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return weights[r * n_part : r * n_part + r, ...]
|
||||
|
||||
def write_tensors(self):
|
||||
# Collect tensors from generator object
|
||||
model_kv = dict(self.get_tensors())
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for i in range(block_count):
|
||||
if f"model.layers.{i}.self_attn.W_pack.weight" in model_kv:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = self._reverse_hf_permute_part(model_kv[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
|
||||
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = self._reverse_hf_permute_part(model_kv[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
|
||||
model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = self._reverse_hf_part(model_kv[f"model.layers.{i}.self_attn.W_pack.weight"],2)
|
||||
del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
|
||||
|
||||
for name, data in model_kv.items():
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue