Change assertions to exceptions in llama_file, find correct cuda backend to create CUDA resources and respect the use_mmap flag again for CUDA.

This commit is contained in:
Markus Tavenrath 2024-06-13 14:32:03 +02:00
parent 1ebe20789b
commit 86869fbdab

117
llama.cpp
View file

@ -1288,7 +1288,6 @@ private:
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
std::stringstream ss;
ret = format("Win32 error code: %s", error_code);
} else {
ret = lpMsgBuf;
@ -1316,8 +1315,9 @@ public:
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
GGML_ASSERT(ret);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError())));
}
return li.QuadPart;
}
@ -1332,11 +1332,15 @@ public:
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
GGML_ASSERT(ret);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError())));
}
}
void read_raw(void * ptr, size_t len) const {
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
// use the Win32 API to do file io instead of the C/C++ library functions.
// There are conditions under which ReadFile cannot read chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_read = 0;
@ -1410,7 +1414,10 @@ public:
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
@ -1420,7 +1427,9 @@ public:
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
@ -3831,19 +3840,40 @@ struct llama_model_loader {
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
#if defined(GGML_USE_CUDA)
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t num_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector<ggml_backend_buffer_t> host_buffers;
std::vector<void*> host_ptrs;
std::vector<ggml_backend_event_t> events;
size_t buffer_idx = 0; // buffer to use for async loads
ggml_backend_t backend = ggml_backend_cuda_init(0); // TODO how to get the CUDA device / backend here?
ggml_backend_t cuda_backend = nullptr;
if (!use_mmap) {
// When not using mmaped io use async uploads from pinned memory to GPU memory.
// First determine if the CUDA backend is active, and if so, determine the device ID.
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
if (buf) {
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
auto cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
if (buffer_type == ggml_backend_cuda_buffer_type(i)) {
cuda_backend = ggml_backend_cuda_init(i);
break;
}
}
}
constexpr size_t num_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
for (size_t idx = 0; idx < num_buffers; ++idx) {
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
events.emplace_back(ggml_backend_event_new(backend));
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
if (cuda_backend) {
for (size_t idx = 0; idx < num_buffers; ++idx) {
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
events.emplace_back(ggml_backend_event_new(cuda_backend));
}
}
}
#endif
@ -3903,32 +3933,37 @@ struct llama_model_loader {
}
} else {
#if defined(GGML_USE_CUDA)
file->seek(weight->offs, SEEK_SET);
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
if (cuda_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
size_t bytes_read = 0;
while (bytes_read < n_size)
{
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
while (bytes_read < n_size)
{
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
ggml_backend_event_record(events[buffer_idx]);
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
ggml_backend_event_record(events[buffer_idx]);
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= num_buffers;
}
#else
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= num_buffers;
}
}
else
#endif
{
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
}
}
}
}
@ -3936,12 +3971,14 @@ struct llama_model_loader {
}
#if defined(GGML_USE_CUDA)
for (size_t idx = 0; idx < num_buffers;++idx) {
ggml_backend_event_synchronize(events[idx]);
ggml_backend_event_free(events[idx]);
ggml_backend_buffer_free(host_buffers[idx]);
//ggml_backend_free(backend);
// free temporary resources used for async cuda uploads
if (cuda_backend) {
for (size_t idx = 0; idx < num_buffers;++idx) {
ggml_backend_event_synchronize(events[idx]);
ggml_backend_event_free(events[idx]);
ggml_backend_buffer_free(host_buffers[idx]);
}
ggml_backend_free(cuda_backend);
}
#endif