convert-new.py : tensor name mapping

This commit is contained in:
Georgi Gerganov 2023-08-17 13:15:17 +03:00
parent e970845383
commit 86bc9d2750
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
2 changed files with 205 additions and 113 deletions

View file

@ -45,14 +45,6 @@ DT_BF16 = UnquantizedDataType('BF16')
DataType = Union[UnquantizedDataType]
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = {
DT_F32: 0,
DT_F16: 1,
}
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
DT_BF16: np.dtype(np.uint16),
DT_F16: np.dtype(np.float16),
@ -78,31 +70,6 @@ class GGMLFileType(enum.Enum):
else:
raise ValueError(self)
# TODO: this is LLaMA specific
def make_tensors_list() -> List[str]:
ret = [
'tok_embeddings.weight',
'norm.weight',
'output.weight',
]
for i in range(80): # maximum number of layer
ret += [
f'layers.{i}.attention.wq.weight',
f'layers.{i}.attention.wk.weight',
f'layers.{i}.attention.wv.weight',
f'layers.{i}.attention.wo.weight',
f'layers.{i}.attention_norm.weight',
f'layers.{i}.feed_forward.w1.weight',
f'layers.{i}.feed_forward.w2.weight',
f'layers.{i}.feed_forward.w3.weight',
f'layers.{i}.ffn_norm.weight',
]
return ret
# TODO: this should be generalized for non-LLaMA models
TENSORS_LIST = make_tensors_list()
TENSORS_SET = set(TENSORS_LIST)
def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
for n_mult in range(8192, 1, -1):
@ -533,34 +500,6 @@ def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
out: LazyModel = {}
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
out["norm.weight"] = model["model.norm.weight"]
out["output.weight"] = model["lm_head.weight"]
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head_kv)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
else:
break
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"]
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"]
return out
# Functionality that simulates `torch.load` but where individual tensors are
# only loaded into memory on demand, not all at once.
@ -750,8 +689,8 @@ class OutputFile:
def __init__(self, fname_out: Path) -> None:
self.gguf = gguf.GGUFWriter.open(fname_out)
def add_meta_arch(self, params: Params, file_type: GGMLFileType) -> None:
llm_arch = "llama"
def add_meta_arch(self, params: Params) -> None:
llm_arch = gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA]
self.gguf.add_architecture (llm_arch)
self.gguf.add_context_length (llm_arch, params.n_ctx)
@ -763,13 +702,6 @@ class OutputFile:
self.gguf.add_head_count_kv (llm_arch, params.n_head_kv)
self.gguf.add_layer_norm_rms_eps (llm_arch, params.f_norm_eps)
#def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
# sname = name.encode('utf-8')
# self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
# self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
# self.fout.write(sname)
# self.fout.seek((self.fout.tell() + 31) & -32)
def add_meta_vocab(self, vocab: Vocab) -> None:
tokens = []
scores = []
@ -794,17 +726,17 @@ class OutputFile:
@staticmethod
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab) -> None:
of = OutputFile(fname_out)
of.add_meta_arch(params, file_type=GGMLFileType.AllF32)
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
of.write_meta()
of.close()
@staticmethod
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
of.add_meta_arch(params, file_type)
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
@ -822,21 +754,39 @@ class OutputFile:
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
wq_type = model["layers.0.attention.wq.weight"].data_type
wq_type = model[gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
return GGMLFileType.MostlyF16
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
raise Exception(f"Unexpected combination of types: {name_to_type}")
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
if "lm_head.weight" in model:
model = convert_transformers_to_orig(model, params)
model = filter_and_sort_tensors(model)
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, params.n_layer)
return model
out: LazyModel = {}
for name, lazy_tensor in model.items():
name_new = name
if name in tmap:
name_new = tmap[name]
elif name.endswith(".weight") and name[:-7] in tmap:
name_new = tmap[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tmap:
name_new = tmap[name[:-5]] + ".bias"
else:
raise Exception(f"Unexpected tensor name: {name}")
out[name_new] = lazy_tensor
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type} | {lazy_tensor.shape}")
return out
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
@ -893,11 +843,6 @@ def load_some_model(path: Path) -> ModelPlus:
# Try the PyTorch patterns too, with lower priority
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
files = [file for glob in globs for file in path.glob(glob)]
if not files:
# Try GGML too, but with lower priority, since if both a non-GGML
# model and a GGML model exist in the same directory, we assume the
# latter was converted from the former.
files = list(path.glob("ggml-model*.bin*"))
if not files:
raise Exception(f"Can't find model in directory {path}")
if len(files) > 1:
@ -914,10 +859,6 @@ def load_some_model(path: Path) -> ModelPlus:
return model_plus
def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
return {name: model[name] for name in TENSORS_LIST if name in model}
def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
# Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might
@ -937,8 +878,10 @@ def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, Sentence
raise FileNotFoundError(
f"Could not find tokenizer.model in {path} or its parent; "
"if it's in another directory, pass the directory as --vocab-dir")
added_tokens_path = path.parent / "added_tokens.json"
print(f"Loading vocab file '{path}', type '{vocabtype}'")
added_tokens_path = path.parent / "added_tokens.json"
if vocabtype == "bpe":
return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
elif vocabtype == "spm":
@ -1018,12 +961,12 @@ def main(args_in: Optional[List[str]] = None) -> None:
vocab = load_vocab(vocab_dir, args.vocabtype)
model = model_plus.model
model = do_necessary_conversions(model, params) # TODO: utilize gguf.get_tensor_name_map
model = convert_model_names(model, params) # TODO: utilize gguf.get_tensor_name_map
output_type = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, output_type)
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
OutputFile.write_all(outfile, params, output_type, model, vocab)
OutputFile.write_all(outfile, params, model, vocab)
print(f"Wrote {outfile}")

193
gguf.py
View file

@ -8,7 +8,7 @@ import sys
import struct
import numpy as np
from enum import IntEnum
from enum import IntEnum, auto
from typing import Any, IO, List
#
@ -70,34 +70,146 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
# recommended mapping of model tensor names for storage in gguf
#
def get_tensor_name_map(n_blocks : int):
#LLAMA_TOKEN_EMBD = "token_embd"
#LLAMA_OUTPUT_NORM = "output_norm"
#LLAMA_OUTPUT = "output"
#LLAMA_ATTN_NORM = "blk.{bid}.attn_norm"
#LLAMA_ATTN_Q = "blk.{bid}.attn_q"
#LLAMA_ATTN_K = "blk.{bid}.attn_k"
#LLAMA_ATTN_V = "blk.{bid}.attn_v"
#LLAMA_ATTN_OUTPUT = "blk.{bid}.attn_output"
#LLAMA_FFN_NORM = "blk.{bid}.ffn_norm"
#LLAMA_FFN_GATE = "blk.{bid}.ffn_gate"
#LLAMA_FFN_DOWN = "blk.{bid}.ffn_down"
#LLAMA_FFN_UP = "blk.{bid}.ffn_up"
#
#GPT_POS_EMBD = "pos_embd"
#
#FALCON_ATTN_NORM_2 = "blk.{bid}.attn_norm_2"
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_NORM = auto()
MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA : "llama",
MODEL_ARCH.FALCON : "falcon",
MODEL_ARCH.GPT2 : "gpt-2",
MODEL_ARCH.GPTJ : "gpt-j",
MODEL_ARCH.GPTNEOX : "gpt-neox",
MODEL_ARCH.MPT : "mpt",
}
MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA : {
MODEL_TENSOR.TOKEN_EMBD : "tok_embd",
MODEL_TENSOR.OUTPUT_NORM : "output_norm",
MODEL_TENSOR.OUTPUT : "output",
MODEL_TENSOR.ROPE_FREQS : "rope_freqs",
MODEL_TENSOR.ATTN_NORM : "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q : "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K : "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V : "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT : "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD : "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM : "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE : "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN : "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP : "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON : {
MODEL_TENSOR.TOKEN_EMBD : "tok_embd",
MODEL_TENSOR.OUTPUT_NORM : "output_norm",
MODEL_TENSOR.OUTPUT : "output",
MODEL_TENSOR.ATTN_NORM : "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2 : "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV : "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT : "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN : "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP : "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2 : {
# TODO
},
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP = {
MODEL_ARCH.LLAMA : {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
},
},
def get_tensor_name_map(arch : MODEL_ARCH, n_blocks : int) -> dict:
tensor_map = {}
# Token embeddings
mapped_to = "token_embd"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings
mapped_to = "pos_embd"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
tensor_map["transformer.wpe"] = mapped_to # gpt2
# Output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Output norm
mapped_to = "output_norm"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth
# Output
mapped_to = "output"
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Attention and fee-forward layer blocks
# Rope frequencies
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
tensor_map["rope.freqs"] = mapped_to # llama-pth
# Attention and feed-forward blocks
for i in range(0,n_blocks):
# Attention norm
mapped_to = "blk."+str(i)+".attn_norm"
# TODO: is there are simpler way to write these 2 lines in Python?
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
@ -105,56 +217,93 @@ def get_tensor_name_map(n_blocks : int):
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2
mapped_to = "blk."+str(i)+".attn_norm_2"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
# Attention query-key-value
mapped_to = "blk."+str(i)+".attn_qkv"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query
mapped_to = "blk."+str(i)+".attn_q"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key
mapped_to = "blk."+str(i)+".attn_k"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value
mapped_to = "blk."+str(i)+".attn_v"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output
mapped_to = "blk."+str(i)+".attn_output"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm
mapped_to = "blk."+str(i)+".ffn_norm"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up
mapped_to = "blk."+str(i)+".ffn_up"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate
mapped_to = "blk."+str(i)+".ffn_gate"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down
mapped_to = "blk."+str(i)+".ffn_down"
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt