Fix bugs in dequant_mul_mat code

This commit is contained in:
0cc4m 2023-05-14 21:14:05 +02:00
parent c77966524a
commit 8795403de3
2 changed files with 16 additions and 17 deletions

View file

@ -155,8 +155,8 @@ __kernel void dequantize_row_q8_0(__global struct block_q8_0* x, __global float*
}
__kernel void dequantize_mul_mat_vec(__global struct block_q4_0* x, __local float* tmp, __global float* y, __global float* dst, int ncols) {
const int row = get_global_id(0);
const int tid = get_local_id(0);
const int row = get_local_id(0);
const int tid = get_global_id(0);
const int block_size = get_local_size(0);
const uint qk = QK4_0;
@ -173,7 +173,6 @@ __kernel void dequantize_mul_mat_vec(__global struct block_q4_0* x, __local floa
const int iybs = col - col%qk; // y block start index
// dequantize
float v0, v1;
const float d = x[ib].d;
const uint8_t vui = x[ib].qs[iqs];
@ -181,8 +180,8 @@ __kernel void dequantize_mul_mat_vec(__global struct block_q4_0* x, __local floa
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
v0 = (vi0 - 8)*d;
v1 = (vi1 - 8)*d;
float v0 = (vi0 - 8)*d;
float v1 = (vi1 - 8)*d;
// matrix multiplication
tmp[tid] += v0 * y[iybs + iqs + 0];
@ -651,41 +650,40 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
cl_event ev_Q, ev_sgemm;
cl_event ev_sgemm;
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, &ev_Q), "ggml_cl_h2d_tensor_2d");
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL), "ggml_cl_h2d_tensor_2d");
} else if (src0->backend == GGML_BACKEND_CL) {
d_Q = * (cl_mem *) src0->data;
d_Q = *(cl_mem*) src0->data;
} else {
GGML_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
printf("Gogogo\n");
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_cl_h2d_tensor_2d");
// compute
// dequantize_mul_mat_vec(__global void * vx, __local float* tmp, __global float * y, __global float * dst, __global int ncols, __global int vx_type) {
const size_t global = ne00;
const size_t global = ne01;
const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne01;
const cl_int qtype = src0->type;
const cl_int ncols = ne00;
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg");
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 1, sizeof(float) * local, NULL), "clSetKernelArg");
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 2, sizeof(cl_mem), &d_Y), "clSetKernelArg");
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 3, sizeof(cl_mem), &d_D), "clSetKernelArg");
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 4, sizeof(cl_int), &ncols), "clSetKernelArg");
CL_CHECK(clSetKernelArg(dequantize_mul_mat_vec_cl, 5, sizeof(cl_int), &qtype), "clSetKernelArg");
CL_CHECK(clEnqueueNDRangeKernel(queue, dequantize_mul_mat_vec_cl, 1, NULL, &global, &local, 1, &ev_Q, &ev_sgemm), "clEnqueueNDRangeKernel");
CL_CHECK(clFinish(queue), "clFinish");
CL_CHECK(clEnqueueNDRangeKernel(queue, dequantize_mul_mat_vec_cl, 1, NULL, &global, &local, 0, NULL, &ev_sgemm), "clEnqueueNDRangeKernel");
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
const size_t local = 16;
const size_t local = ggml_blck_size(type) / 2;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg");
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X), "clSetKernelArg");
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, &local, 1, &ev_Q, NULL), "clEnqueueNDRangeKernel");
CL_CHECK(clFinish(queue), "clFinish");
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, &local, 0, NULL, NULL), "clEnqueueNDRangeKernel");
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_cl_h2d_tensor_2d");
@ -712,6 +710,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL), "clEnqueueReadBuffer");
clReleaseEvent(ev_sgemm);
}
}

View file

@ -1075,7 +1075,7 @@ static void llama_model_load_internal(
ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
}
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
fprintf(stderr, "%s: [opencl] offloading output layer to GPU\n", __func__);
ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
}