Add NVIDIA cuBLAS support (#1044)

This commit is contained in:
slaren 2023-04-19 11:22:45 +02:00 committed by GitHub
parent 6667401238
commit 8944a13296
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 221 additions and 13 deletions

206
ggml.c
View file

@ -142,10 +142,46 @@ inline static void* ggml_aligned_malloc(size_t size) {
} \
} while (0)
#ifdef GGML_USE_ACCELERATE
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
#elif GGML_USE_OPENBLAS
#elif defined(GGML_USE_OPENBLAS)
#include <cblas.h>
#elif defined(GGML_USE_CUBLAS)
#include <cublas_v2.h>
#include <cuda_runtime.h>
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
static cublasHandle_t cublasH = NULL;
static cudaStream_t cudaStream = NULL;
static void init_cublas(void) {
if (cublasH == NULL) {
// create cublas handle, bind a stream
CUBLAS_CHECK(cublasCreate(&cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
}
}
#endif
#undef MIN
@ -3836,6 +3872,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
// initialize cuBLAS
#if defined(GGML_USE_CUBLAS)
init_cublas();
#endif
is_first_call = false;
}
@ -7567,7 +7608,7 @@ static void ggml_compute_forward_rms_norm(
// ggml_compute_forward_mul_mat
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(
@ -7607,7 +7648,7 @@ static void ggml_compute_forward_mul_mat_f32(
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
const int64_t ne10 = src1->ne[0];
#endif
const int64_t ne11 = src1->ne[1];
@ -7664,7 +7705,7 @@ static void ggml_compute_forward_mul_mat_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
@ -7678,6 +7719,21 @@ static void ggml_compute_forward_mul_mat_f32(
return;
}
#if defined(GGML_USE_CUBLAS)
float *d_X = NULL;
float *d_Y = NULL;
float *d_D = NULL;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne10;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
@ -7685,15 +7741,37 @@ static void ggml_compute_forward_mul_mat_f32(
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
CUBLAS_CHECK(
cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
#endif
}
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
#endif
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
@ -7823,7 +7901,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float));
@ -7839,10 +7917,37 @@ static void ggml_compute_forward_mul_mat_f16_f32(
return;
}
float * const wdata = params->wdata;
#if defined(GGML_USE_CUBLAS)
ggml_fp16_t * const wdata = params->wdata;
float *d_X = NULL;
float *d_Y = NULL;
float *d_D = NULL;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne10;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
#else
float * const wdata = params->wdata;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
#if defined(GGML_USE_CUBLAS)
// with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne11; ++i01) {
for (int64_t i00 = 0; i00 < ne10; ++i00) {
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
}
}
}
#else
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
@ -7851,7 +7956,32 @@ static void ggml_compute_forward_mul_mat_f16_f32(
}
}
}
#endif
#if defined(GGML_USE_CUBLAS)
const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
CUBLAS_CHECK(
cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, CUDA_R_16F, ne00,
d_Y, CUDA_R_16F, ne10,
&beta, d_D, CUDA_R_32F, ne01,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
@ -7863,9 +7993,15 @@ static void ggml_compute_forward_mul_mat_f16_f32(
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
#endif
}
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
#endif
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
return;
@ -8017,7 +8153,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
@ -8034,6 +8170,21 @@ static void ggml_compute_forward_mul_mat_q_f32(
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#if defined(GGML_USE_CUBLAS)
float *d_X = NULL;
float *d_Y = NULL;
float *d_D = NULL;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne10;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
{
@ -8049,15 +8200,38 @@ static void ggml_compute_forward_mul_mat_q_f32(
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
CUBLAS_CHECK(
cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
#endif
}
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
#endif
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
@ -10874,7 +11048,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
size_t cur = 0;
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
@ -10891,7 +11065,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
cur = 0;
} else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1;
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
@ -12231,7 +12405,15 @@ int ggml_cpu_has_wasm_simd(void) {
}
int ggml_cpu_has_blas(void) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_cublas(void) {
#if defined(GGML_USE_CUBLAS)
return 1;
#else
return 0;