This commit is contained in:
joshcarp 2024-04-30 08:51:01 -04:00
parent 5eea11e241
commit 896dee5059

View file

@ -5990,7 +5990,7 @@ static bool llm_load_tensors(
const int64_t n_head_v = num_kv_heads[i];
const int64_t n_head_kv = n_head_k+n_head_v;
const int64_t n_head = n_head_kv+ num_query_heads[i];
const int64_t n_kv = (num_kv_heads[i]+num_kv_heads[i])*n_embd_head;
// const int64_t n_kv = (num_kv_heads[i]+num_kv_heads[i])*n_embd_head;
modified_hparams.n_head = n_head;
modified_hparams.n_head_kv = n_head_kv;
const int64_t n_embd_gqa = n_embd_head * n_head;
@ -6589,7 +6589,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_OPENELM) {
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
@ -6643,6 +6643,8 @@ static struct ggml_tensor * llm_build_kqv(
0);
cb(v, "v", il);
// assert(n_kv <= n_tokens);
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
cb(kqv, "kqv", il);
@ -10733,6 +10735,9 @@ struct llm_build_context {
llama_hparams modified_hparams(hparams);
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
// struct ggml_tensor * KQ_mask = build_inp_KQ_mask2(n_kv);
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
auto residual = inpL;
@ -10742,7 +10747,7 @@ struct llm_build_context {
const int64_t n_head_v = num_kv_heads[il];
const int64_t n_head_kv = n_head_k+n_head_v;
const int64_t n_head = n_head_kv+ num_query_heads[il];
const int64_t n_kv = (num_kv_heads[il]+num_kv_heads[il])*n_embd_head;
// const int64_t n_kv = (num_kv_heads[il]+num_kv_heads[il])*n_embd_head; // This makes asserts fail
modified_hparams.n_head = n_head;
modified_hparams.n_head = 4*n_head_k; // somehow this works. Some places expect this to be groups*n_head_kv insteal of n_head. maybe this is the defintiion somewhere.
modified_hparams.n_head_kv = n_head_kv;
@ -10789,7 +10794,6 @@ struct llm_build_context {
// reshape, Kcur -> [64][3(first layer)][n_tokens]
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, num_query_heads[il], n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_k, n_tokens);
struct ggml_tensor * KQ_mask = build_inp_KQ_mask2(n_kv);
Qcur = ggml_rope_custom(
ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
@ -10804,54 +10808,24 @@ struct llm_build_context {
ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
// So because our original wo matrix wasn't 3x, the below function fails because there aren't enough elems in it.
// Got: [head_dim][n_tokens][n_head_v]
// Want: [n_embd_v_gqa(384)][n_tokens]
// I guess this means that i need to be able to able to repeat them
// Assertion failed: (v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens), function llm_build_kv_store, file llama.cpp, line 6309.
// In the python version it does this:
/*
if self.num_groups != 1:
# GQA
# [B, k_h, S, h] --> [B, q_h, S, h] // so, k=3 -> q=12
keys = keys.repeat_interleave(self.num_groups, dim=1)
# [B, v_h, S, h] --> [B, q_h, S, h] // so, v=3 -> q=12
values = values.repeat_interleave(self.num_groups, dim=1)
...
attn_output = F.scaled_dot_product_attention(
queries,
keys,
values,
attn_mask=causal_mask,
dropout_p=0,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(
batch_size, seq_length, self.num_q_heads * self.head_dim
)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
*
*/
// 4 == num groups
int64_t nev[GGML_MAX_DIMS] = {2*Vcur->ne[0], Vcur->ne[1], Vcur->ne[2], Vcur->ne[3]};
struct ggml_tensor * Vcur2 = ggml_new_tensor(ctx0, Vcur->type, GGML_MAX_DIMS, nev);
// Vcur2->op = GGML_OP_REPEAT;
Vcur2->grad = ggml_dup_tensor(ctx0, Vcur);
Vcur2 = ggml_reshape_2d(ctx0, Vcur2, modified_hparams.n_embd_k_gqa(), n_tokens);
int64_t nek[GGML_MAX_DIMS] = {2*Kcur->ne[0], Kcur->ne[1], Kcur->ne[2], Kcur->ne[3]};
struct ggml_tensor * Kcur2 = ggml_new_tensor(ctx0, Kcur->type, GGML_MAX_DIMS, nek);
// Kcur2->op = GGML_OP_REPEAT;
Kcur2->grad = ggml_dup_tensor(ctx0, Kcur);
Kcur2 = ggml_reshape_2d(ctx0, Kcur2, modified_hparams.n_embd_k_gqa(), n_tokens);
cb(Kcur, "Kcur", il);
// Attempt at transscreibing from python:
// cur = ggml_flash_attn(ctx0, Qcur, Kcur, Vcur, true);
// cur = ggml_transpose(ctx0, cur);
// cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// cur = ggml_cont(ctx0, cur);
// cur = ggml_reshape_2d(ctx0, cur, n_embd_head_k*(2*n_head_kv), n_tokens);
// cur = ggml_mul_mat(ctx0, cur, model.layers[il].wo);
// cur = ggml_transpose(ctx0, cur);
cur = llm_build_kv(ctx0, model, modified_hparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur2, Vcur2, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);