llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
This commit is contained in:
parent
c43c2da8af
commit
898aeca90a
15 changed files with 763 additions and 257 deletions
97
convert.py
97
convert.py
|
@ -151,8 +151,11 @@ class Params:
|
|||
n_head_kv: int
|
||||
f_norm_eps: float
|
||||
|
||||
rope_scaling_type: gguf.RopeScalingType | None = None
|
||||
f_rope_freq_base: float | None = None
|
||||
f_rope_scale: float | None = None
|
||||
n_orig_ctx: int | None = None
|
||||
rope_finetuned: bool | None = None
|
||||
|
||||
ftype: GGMLFileType | None = None
|
||||
|
||||
|
@ -198,20 +201,20 @@ class Params:
|
|||
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"]
|
||||
n_embd = config["hidden_size"]
|
||||
n_layer = config["num_hidden_layers"]
|
||||
n_ff = config["intermediate_size"]
|
||||
n_head = config["num_attention_heads"]
|
||||
n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
|
||||
f_norm_eps = config["rms_norm_eps"]
|
||||
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
|
||||
|
||||
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
|
||||
rope_scaling = config.get("rope_scaling")
|
||||
if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
|
||||
f_rope_scale = config["rope_scaling"].get("factor")
|
||||
else:
|
||||
f_rope_scale = None
|
||||
|
||||
if rope_scaling is not None and (typ := rope_scaling.get("type")):
|
||||
rope_factor = rope_scaling.get("factor")
|
||||
f_rope_scale = rope_factor
|
||||
if typ == "linear":
|
||||
rope_scaling_type = gguf.RopeScalingType.LINEAR
|
||||
elif typ == "yarn":
|
||||
rope_scaling_type = gguf.RopeScalingType.YARN
|
||||
n_orig_ctx = rope_scaling['original_max_position_embeddings']
|
||||
rope_finetuned = rope_scaling['finetuned']
|
||||
else:
|
||||
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
|
||||
|
||||
if "max_sequence_length" in config:
|
||||
n_ctx = config["max_sequence_length"]
|
||||
|
@ -222,16 +225,19 @@ class Params:
|
|||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
|
||||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_layer = n_layer,
|
||||
n_ctx = n_ctx,
|
||||
n_ff = n_ff,
|
||||
n_head = n_head,
|
||||
n_head_kv = n_head_kv,
|
||||
f_norm_eps = f_norm_eps,
|
||||
f_rope_freq_base = f_rope_freq_base,
|
||||
f_rope_scale = f_rope_scale,
|
||||
n_vocab = config["vocab_size"],
|
||||
n_embd = config["hidden_size"],
|
||||
n_layer = config["num_hidden_layers"],
|
||||
n_ctx = n_ctx,
|
||||
n_ff = config["intermediate_size"],
|
||||
n_head = (n_head := config["num_attention_heads"]),
|
||||
n_head_kv = config.get("num_key_value_heads", n_head),
|
||||
f_norm_eps = config["rms_norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
rope_scaling_type = rope_scaling_type,
|
||||
f_rope_scale = f_rope_scale,
|
||||
n_orig_ctx = n_orig_ctx,
|
||||
rope_finetuned = rope_finetuned,
|
||||
)
|
||||
|
||||
# LLaMA v2 70B params.json
|
||||
|
@ -240,17 +246,8 @@ class Params:
|
|||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
||||
n_embd = config["dim"]
|
||||
n_layer = config["n_layers"]
|
||||
n_ff = -1
|
||||
n_head = config["n_heads"]
|
||||
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
|
||||
f_norm_eps = config["norm_eps"]
|
||||
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
|
||||
|
||||
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
||||
if f_rope_freq_base == 1000000:
|
||||
if config.get("rope_theta") == 1000000:
|
||||
# CodeLlama
|
||||
n_ctx = 16384
|
||||
elif config["norm_eps"] == 1e-05:
|
||||
|
@ -260,22 +257,16 @@ class Params:
|
|||
# LLaMA v1
|
||||
n_ctx = 2048
|
||||
|
||||
if n_vocab == -1:
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0]
|
||||
|
||||
if n_ff == -1:
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
|
||||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_layer = n_layer,
|
||||
n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
|
||||
n_embd = config["dim"],
|
||||
n_layer = config["n_layers"],
|
||||
n_ctx = n_ctx,
|
||||
n_ff = n_ff,
|
||||
n_head = n_head,
|
||||
n_head_kv = n_head_kv,
|
||||
f_norm_eps = f_norm_eps,
|
||||
f_rope_freq_base = f_rope_freq_base,
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
|
||||
n_head = (n_head := config["n_heads"]),
|
||||
n_head_kv = config.get("n_kv_heads", n_head),
|
||||
f_norm_eps = config["norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
@ -831,8 +822,16 @@ class OutputFile:
|
|||
if params.f_rope_freq_base is not None:
|
||||
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
||||
|
||||
if params.f_rope_scale is not None:
|
||||
self.gguf.add_rope_scale_linear(params.f_rope_scale)
|
||||
if params.rope_scaling_type:
|
||||
assert params.f_rope_scale is not None
|
||||
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
|
||||
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
|
||||
|
||||
if params.n_orig_ctx is not None:
|
||||
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
|
||||
|
||||
if params.rope_finetuned is not None:
|
||||
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
|
||||
|
||||
if params.ftype is not None:
|
||||
self.gguf.add_file_type(params.ftype)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue