llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
This commit is contained in:
parent
c43c2da8af
commit
898aeca90a
15 changed files with 763 additions and 257 deletions
153
ggml-cuda.cu
153
ggml-cuda.cu
|
@ -4493,11 +4493,41 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// rope == RoPE == rotary positional embedding
|
||||
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
}
|
||||
|
||||
struct rope_corr_dims {
|
||||
float v[4];
|
||||
};
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
static __device__ void rope_yarn(
|
||||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||
float * cos_theta, float * sin_theta
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||
}
|
||||
*cos_theta = cosf(theta) * mscale;
|
||||
*sin_theta = sinf(theta) * mscale;
|
||||
}
|
||||
|
||||
// rope == RoPE == rotary positional embedding
|
||||
template<typename T, bool has_pos>
|
||||
static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale) {
|
||||
static __global__ void rope(
|
||||
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||||
) {
|
||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (col >= ncols) {
|
||||
|
@ -4509,10 +4539,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t
|
|||
const int i2 = row/p_delta_rows;
|
||||
|
||||
const int p = has_pos ? pos[i2] : 0;
|
||||
const float p0 = p*freq_scale;
|
||||
const float theta = p0*powf(theta_scale, col/2);
|
||||
const float sin_theta = sinf(theta);
|
||||
const float cos_theta = cosf(theta);
|
||||
const float theta_base = p*powf(freq_base, -col/ncols);
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + 1];
|
||||
|
@ -4522,8 +4552,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t
|
|||
}
|
||||
|
||||
template<typename T, bool has_pos>
|
||||
static __global__ void rope_neox(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale) {
|
||||
static __global__ void rope_neox(
|
||||
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||||
) {
|
||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (col >= ncols) {
|
||||
|
@ -4534,11 +4566,14 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in
|
|||
const int i = row*ncols + col/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
// simplified from `(row * ncols + col) * (-1 / ncols)`
|
||||
const float cur_rot = -col/ncols - row;
|
||||
|
||||
const int p = has_pos ? pos[i2] : 0;
|
||||
const float p0 = p*freq_scale;
|
||||
const float theta = p0*powf(theta_scale, col/2);
|
||||
const float sin_theta = sinf(theta);
|
||||
const float cos_theta = cosf(theta);
|
||||
const float theta_base = p*powf(freq_base, cur_rot);
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + ncols/2];
|
||||
|
@ -4547,8 +4582,10 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in
|
|||
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale, const int n_ctx) {
|
||||
static __global__ void rope_glm_f32(
|
||||
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||
int n_ctx
|
||||
) {
|
||||
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int half_n_dims = ncols/4;
|
||||
|
||||
|
@ -4560,7 +4597,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
|
|||
const int i = row*ncols + col;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
const float col_theta_scale = powf(theta_scale, col);
|
||||
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
|
||||
// FIXME: this is likely wrong
|
||||
const int p = pos != nullptr ? pos[i2] : 0;
|
||||
|
||||
|
@ -5584,40 +5621,54 @@ static void clamp_f32_cuda(const float * x, float * dst, const float min, const
|
|||
}
|
||||
|
||||
template<typename T>
|
||||
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||
static void rope_cuda(
|
||||
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||
) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||
if (pos == nullptr) {
|
||||
rope<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||
);
|
||||
} else {
|
||||
rope<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void rope_neox_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||
static void rope_neox_cuda(
|
||||
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
||||
) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||
if (pos == nullptr) {
|
||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||
);
|
||||
} else {
|
||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
|
||||
static void rope_glm_f32_cuda(
|
||||
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, int n_ctx, cudaStream_t stream
|
||||
) {
|
||||
GGML_ASSERT(ncols % 4 == 0);
|
||||
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
|
||||
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
|
||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx);
|
||||
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
|
||||
}
|
||||
|
||||
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
||||
|
@ -6477,17 +6528,20 @@ inline void ggml_cuda_op_rope(
|
|||
const int64_t ne2 = dst->ne[2];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||
|
||||
// RoPE alteration for extended context
|
||||
|
||||
float freq_base, freq_scale;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const int32_t * pos = nullptr;
|
||||
if ((mode & 1) == 0) {
|
||||
|
@ -6499,24 +6553,39 @@ inline void ggml_cuda_op_rope(
|
|||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
||||
rope_corr_dims corr_dims;
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||
|
||||
// compute
|
||||
if (is_glm) {
|
||||
GGML_ASSERT(false);
|
||||
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream);
|
||||
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
|
||||
} else if (is_neox) {
|
||||
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||
rope_neox_cuda(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||
rope_neox_cuda(
|
||||
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||
rope_cuda(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||
rope_cuda(
|
||||
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue