resolve comments
This commit is contained in:
parent
42bcc5bedb
commit
8b8c6d5052
2 changed files with 57 additions and 27 deletions
|
@ -1,5 +1,5 @@
|
|||
#!/usr/bin/env python3
|
||||
# HF falcon--> gguf conversion
|
||||
# HF refact--> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
@ -15,8 +15,8 @@ import numpy as np
|
|||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
if "NO_LOCAL_GGUF" not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
||||
import gguf
|
||||
|
||||
|
||||
|
@ -31,13 +31,17 @@ def bytes_to_unicode():
|
|||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
return dict(zip(bs, (chr(n) for n in cs)))
|
||||
|
||||
|
@ -54,32 +58,41 @@ def count_model_parts(dir_model: Path) -> int:
|
|||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a Refact model to a GGML compatible file")
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a Refact model to a GGML compatible file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
"--vocab-only",
|
||||
action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
"--outfile",
|
||||
type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
"model",
|
||||
type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
"ftype",
|
||||
type=int,
|
||||
choices=[0, 1],
|
||||
default=1,
|
||||
nargs="?",
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
print(f"Error: {args.model} is not a directory", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
|
@ -93,9 +106,9 @@ if args.outfile is not None:
|
|||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
print("gguf: loading model " + dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
@ -108,7 +121,7 @@ if hparams["architectures"][0] != "GPTRefactForCausalLM":
|
|||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.REFACT
|
||||
ARCH = gguf.MODEL_ARCH.REFACT
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
@ -142,9 +155,9 @@ tokens: list[bytearray] = []
|
|||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
||||
tokenizer_json_file = dir_model / "tokenizer.json"
|
||||
if not tokenizer_json_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
||||
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# gpt2 tokenizer
|
||||
|
@ -157,7 +170,11 @@ print("gguf: get gpt2 tokenizer vocab")
|
|||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
|
||||
vocab_size = (
|
||||
hparams["vocab_size"]
|
||||
if "vocab_size" in hparams
|
||||
else len(tokenizer_json["model"]["vocab"])
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
|
||||
|
@ -176,29 +193,29 @@ for i in range(vocab_size):
|
|||
if ord(c) < 256: # single byte character
|
||||
text.append(byte_decoder[ord(c)])
|
||||
else: # multibyte special token character
|
||||
text.extend(c.encode('utf-8'))
|
||||
text.extend(c.encode("utf-8"))
|
||||
else:
|
||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||
pad_token = f"[PAD{i}]".encode("utf8")
|
||||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(0.0) # dymmy
|
||||
scores.append(0.0) # dymmy
|
||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = 1
|
||||
|
||||
head_dim = hparams["n_embd"] // n_head
|
||||
|
@ -230,7 +247,7 @@ for part_name in part_names:
|
|||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ))
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
@ -247,10 +264,23 @@ for part_name in part_names:
|
|||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
if (
|
||||
ftype == 1
|
||||
and data_dtype == np.float32
|
||||
and name.endswith(".weight")
|
||||
and n_dims == 2
|
||||
):
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
print(
|
||||
new_name
|
||||
+ ", n_dims = "
|
||||
+ str(n_dims)
|
||||
+ ", "
|
||||
+ str(old_dtype)
|
||||
+ " --> "
|
||||
+ str(data.dtype)
|
||||
)
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
|
|
@ -4473,7 +4473,7 @@ static int llama_decode_internal(
|
|||
// If all tensors can be run on the GPU then using more than 1 thread is detrimental.
|
||||
const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
|
||||
model.arch == LLM_ARCH_BAICHUAN ||
|
||||
model.arch == LLM_ARCH_FALCON ||
|
||||
model.arch == LLM_ARCH_FALCON ||
|
||||
model.arch == LLM_ARCH_REFACT;
|
||||
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
|
||||
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue