resolve comments

This commit is contained in:
ds5t5 2023-09-25 16:03:14 -07:00
parent 42bcc5bedb
commit 8b8c6d5052
2 changed files with 57 additions and 27 deletions

View file

@ -1,5 +1,5 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
# HF refact--> gguf conversion
from __future__ import annotations
@ -15,8 +15,8 @@ import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
@ -31,13 +31,17 @@ def bytes_to_unicode():
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
cs.append(2**8 + n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
@ -54,32 +58,41 @@ def count_model_parts(dir_model: Path) -> int:
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Refact model to a GGML compatible file")
parser = argparse.ArgumentParser(
description="Convert a Refact model to a GGML compatible file"
)
parser.add_argument(
"--vocab-only", action="store_true",
"--vocab-only",
action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
"--outfile",
type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
"model",
type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
"ftype",
type=int,
choices=[0, 1],
default=1,
nargs="?",
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
print(f"Error: {args.model} is not a directory", file=sys.stderr)
sys.exit(1)
# possible tensor data types
@ -93,9 +106,9 @@ if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
print("gguf: loading model "+dir_model.name)
print("gguf: loading model " + dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
@ -108,7 +121,7 @@ if hparams["architectures"][0] != "GPTRefactForCausalLM":
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.REFACT
ARCH = gguf.MODEL_ARCH.REFACT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
@ -142,9 +155,9 @@ tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
tokenizer_json_file = dir_model / "tokenizer.json"
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
sys.exit(1)
# gpt2 tokenizer
@ -157,7 +170,11 @@ print("gguf: get gpt2 tokenizer vocab")
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
vocab_size = (
hparams["vocab_size"]
if "vocab_size" in hparams
else len(tokenizer_json["model"]["vocab"])
)
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
@ -176,29 +193,29 @@ for i in range(vocab_size):
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
text.extend(c.encode("utf-8"))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
scores.append(0.0) # dymmy
scores.append(0.0) # dymmy
toktypes.append(gguf.TokenType.NORMAL) # dummy
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head = hparams["n_head"]
n_head_kv = 1
head_dim = hparams["n_embd"] // n_head
@ -230,7 +247,7 @@ for part_name in part_names:
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ))
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
@ -247,10 +264,23 @@ for part_name in part_names:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
if (
ftype == 1
and data_dtype == np.float32
and name.endswith(".weight")
and n_dims == 2
):
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
print(
new_name
+ ", n_dims = "
+ str(n_dims)
+ ", "
+ str(old_dtype)
+ " --> "
+ str(data.dtype)
)
gguf_writer.add_tensor(new_name, data)

View file

@ -4473,7 +4473,7 @@ static int llama_decode_internal(
// If all tensors can be run on the GPU then using more than 1 thread is detrimental.
const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
model.arch == LLM_ARCH_BAICHUAN ||
model.arch == LLM_ARCH_FALCON ||
model.arch == LLM_ARCH_FALCON ||
model.arch == LLM_ARCH_REFACT;
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {