resolve comments

This commit is contained in:
ds5t5 2023-09-25 16:03:14 -07:00
parent 42bcc5bedb
commit 8b8c6d5052
2 changed files with 57 additions and 27 deletions

View file

@ -1,5 +1,5 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
# HF refact--> gguf conversion
from __future__ import annotations
@ -15,8 +15,8 @@ import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
@ -31,7 +31,11 @@ def bytes_to_unicode():
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
@ -54,32 +58,41 @@ def count_model_parts(dir_model: Path) -> int:
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Refact model to a GGML compatible file")
parser = argparse.ArgumentParser(
description="Convert a Refact model to a GGML compatible file"
)
parser.add_argument(
"--vocab-only", action="store_true",
"--vocab-only",
action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
"--outfile",
type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
"model",
type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
"ftype",
type=int,
choices=[0, 1],
default=1,
nargs="?",
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
print(f"Error: {args.model} is not a directory", file=sys.stderr)
sys.exit(1)
# possible tensor data types
@ -93,7 +106,7 @@ if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
print("gguf: loading model " + dir_model.name)
@ -142,9 +155,9 @@ tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
tokenizer_json_file = dir_model / "tokenizer.json"
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
sys.exit(1)
# gpt2 tokenizer
@ -157,7 +170,11 @@ print("gguf: get gpt2 tokenizer vocab")
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
vocab_size = (
hparams["vocab_size"]
if "vocab_size" in hparams
else len(tokenizer_json["model"]["vocab"])
)
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
@ -176,7 +193,7 @@ for i in range(vocab_size):
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
text.extend(c.encode("utf-8"))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
@ -247,10 +264,23 @@ for part_name in part_names:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
if (
ftype == 1
and data_dtype == np.float32
and name.endswith(".weight")
and n_dims == 2
):
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
print(
new_name
+ ", n_dims = "
+ str(n_dims)
+ ", "
+ str(old_dtype)
+ " --> "
+ str(data.dtype)
)
gguf_writer.add_tensor(new_name, data)