sync : ggml (part 1)
This commit is contained in:
parent
bcc0eb4591
commit
8bad78b8e2
8 changed files with 1130 additions and 320 deletions
733
ggml-backend.c
733
ggml-backend.c
|
@ -9,14 +9,36 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
|
||||
// backend buffer type
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
return buft->iface.alloc_buffer(buft, size);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_alignment(buft);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
return buft->iface.get_alloc_size(buft, tensor);
|
||||
}
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return buft->iface.supports_backend(buft, backend);
|
||||
}
|
||||
|
||||
// backend buffer
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
struct ggml_backend * backend,
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size) {
|
||||
|
@ -26,7 +48,7 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
|
|||
|
||||
(*buffer) = (struct ggml_backend_buffer) {
|
||||
/* .interface = */ iface,
|
||||
/* .backend = */ backend,
|
||||
/* .buft = */ buft,
|
||||
/* .context = */ context,
|
||||
/* .size = */ size,
|
||||
};
|
||||
|
@ -45,10 +67,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
|||
free(buffer);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_get_alignment(buffer->backend);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||
return buffer->size;
|
||||
}
|
||||
|
@ -61,14 +79,6 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|||
return base;
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buffer->iface.get_alloc_size) {
|
||||
return buffer->iface.get_alloc_size(buffer, tensor);
|
||||
}
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
|
@ -76,19 +86,20 @@ void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_t
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// free_tensor is optional
|
||||
if (buffer->iface.free_tensor) {
|
||||
buffer->iface.free_tensor(buffer, tensor);
|
||||
}
|
||||
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
|
||||
return buffer->buft;
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
|
||||
return tensor->buffer ? tensor->buffer->backend : NULL;
|
||||
}
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return "NULL";
|
||||
|
@ -104,43 +115,53 @@ void ggml_backend_free(ggml_backend_t backend) {
|
|||
backend->iface.free(backend);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return backend->iface.get_default_buffer_type(backend);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
|
||||
return backend->iface.alloc_buffer(backend, size);
|
||||
return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
|
||||
}
|
||||
|
||||
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
|
||||
return backend->iface.get_alignment(backend);
|
||||
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_t backend = ggml_get_backend(tensor);
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(backend != NULL && "tensor backend not set");
|
||||
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
backend->iface.synchronize(backend);
|
||||
tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_backend_t backend = ggml_get_backend(tensor);
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(backend != NULL && "tensor backend not set");
|
||||
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
backend->iface.synchronize(backend);
|
||||
tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
if (backend->iface.synchronize == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
backend->iface.synchronize(backend);
|
||||
}
|
||||
|
||||
|
@ -154,10 +175,16 @@ void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_pla
|
|||
|
||||
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
backend->iface.graph_plan_compute(backend, plan);
|
||||
|
||||
// TODO: optional sync
|
||||
ggml_backend_synchronize(backend);
|
||||
}
|
||||
|
||||
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
backend->iface.graph_compute(backend, cgraph);
|
||||
|
||||
// TODO: optional sync
|
||||
ggml_backend_synchronize(backend);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
|
@ -194,14 +221,15 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
|||
|
||||
// TODO: allow backends to support copy to/from same backend
|
||||
|
||||
if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
|
||||
ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
|
||||
} else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
|
||||
ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
|
||||
if (dst->buffer->iface.cpy_tensor_from != NULL) {
|
||||
dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
|
||||
} else if (src->buffer->iface.cpy_tensor_to != NULL) {
|
||||
src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
|
||||
} else {
|
||||
// shouldn't be hit when copying from/to CPU
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
|
||||
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
|
||||
"are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
|
||||
#endif
|
||||
size_t nbytes = ggml_nbytes(src);
|
||||
void * data = malloc(nbytes);
|
||||
|
@ -211,8 +239,197 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
|||
}
|
||||
}
|
||||
|
||||
// backend registry
|
||||
|
||||
struct ggml_backend_reg {
|
||||
char name[128];
|
||||
ggml_backend_init_fn init_fn;
|
||||
ggml_backend_buffer_type_t default_buffer_type;
|
||||
void * user_data;
|
||||
};
|
||||
|
||||
#define GGML_MAX_BACKENDS_REG 16
|
||||
static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
|
||||
static size_t ggml_backend_registry_count = 0;
|
||||
|
||||
size_t ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
||||
GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
|
||||
|
||||
int id = ggml_backend_registry_count;
|
||||
|
||||
ggml_backend_registry[id] = (struct ggml_backend_reg) {
|
||||
/* .name = */ {0},
|
||||
/* .fn = */ init_fn,
|
||||
/* .default_buffer_type = */ default_buffer_type,
|
||||
/* .user_data = */ user_data,
|
||||
};
|
||||
|
||||
snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
|
||||
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: registered backend %s\n", __func__, name);
|
||||
#endif
|
||||
|
||||
ggml_backend_registry_count++;
|
||||
return ggml_backend_registry_count - 1;
|
||||
}
|
||||
|
||||
|
||||
size_t ggml_backend_reg_get_count(void) {
|
||||
return ggml_backend_registry_count;
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_find_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_registry_count; i++) {
|
||||
// TODO: case insensitive in a portable way
|
||||
if (strcmp(ggml_backend_registry[i].name, name) == 0) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return SIZE_MAX;
|
||||
}
|
||||
|
||||
// init from backend:params string
|
||||
ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
|
||||
const char * params = strchr(backend_str, ':');
|
||||
char backend_name[128];
|
||||
if (params == NULL) {
|
||||
strcpy(backend_name, backend_str);
|
||||
params = "";
|
||||
} else {
|
||||
strncpy(backend_name, backend_str, params - backend_str);
|
||||
backend_name[params - backend_str] = '\0';
|
||||
params++;
|
||||
}
|
||||
|
||||
size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
|
||||
if (backend_i == SIZE_MAX) {
|
||||
fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_reg_init_backend(backend_i, params);
|
||||
}
|
||||
|
||||
const char * ggml_backend_reg_get_name(size_t i) {
|
||||
GGML_ASSERT(i < ggml_backend_registry_count);
|
||||
return ggml_backend_registry[i].name;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
|
||||
GGML_ASSERT(i < ggml_backend_registry_count);
|
||||
return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
|
||||
GGML_ASSERT(i < ggml_backend_registry_count);
|
||||
return ggml_backend_registry[i].default_buffer_type;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
|
||||
GGML_ASSERT(i < ggml_backend_registry_count);
|
||||
return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
|
||||
}
|
||||
|
||||
// backend CPU
|
||||
|
||||
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)buffer->context;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
};
|
||||
|
||||
// for buffers from ptr, free is not called
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
};
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||
|
||||
GGML_ASSERT(data != NULL && "failed to allocate buffer");
|
||||
|
||||
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_cpu(backend);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
|
||||
/* .iface = */ {
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_type_cpu;
|
||||
}
|
||||
|
||||
struct ggml_backend_cpu_context {
|
||||
int n_threads;
|
||||
void * work_data;
|
||||
|
@ -222,7 +439,7 @@ struct ggml_backend_cpu_context {
|
|||
static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
|
||||
return "CPU";
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
||||
|
@ -232,80 +449,10 @@ static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
|||
free(backend);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)buffer->context;
|
||||
}
|
||||
static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .free_tensor = */ NULL, // no cleanup required
|
||||
};
|
||||
|
||||
// for buffers from ptr, free is not called
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .free_tensor = */ NULL,
|
||||
};
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
|
||||
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||
|
||||
GGML_ASSERT(data != NULL && "failed to allocate buffer");
|
||||
|
||||
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
struct ggml_backend_plan_cpu {
|
||||
|
@ -334,7 +481,7 @@ static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backen
|
|||
free(cpu_plan->cplan.work_data);
|
||||
free(cpu_plan);
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
|
@ -342,7 +489,7 @@ static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_bac
|
|||
|
||||
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
|
@ -363,25 +510,25 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c
|
|||
|
||||
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
return true;
|
||||
UNUSED(backend);
|
||||
UNUSED(op);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
GGML_UNUSED(op);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_get_alignment,
|
||||
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cpu_synchronize,
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
/* .get_name = */ ggml_backend_cpu_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_from_async = */ NULL,
|
||||
/* .cpy_tensor_to_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
};
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
|
@ -411,10 +558,19 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
|||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
|
||||
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
|
||||
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
|
||||
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
|
||||
return ggml_backend_cpu_init();
|
||||
|
||||
GGML_UNUSED(params);
|
||||
GGML_UNUSED(user_data);
|
||||
}
|
||||
|
||||
GGML_BACKEND_REGISTER("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL)
|
||||
|
||||
// scheduler
|
||||
|
||||
#define GGML_MAX_BACKENDS 4
|
||||
|
@ -427,7 +583,7 @@ struct ggml_backend_sched_split {
|
|||
int i_end;
|
||||
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
|
||||
int n_inputs;
|
||||
struct ggml_cgraph * graph;
|
||||
struct ggml_cgraph graph;
|
||||
};
|
||||
|
||||
struct ggml_backend_sched {
|
||||
|
@ -453,7 +609,7 @@ struct ggml_backend_sched {
|
|||
#else
|
||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||
#endif
|
||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
|
||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||
};
|
||||
|
||||
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
||||
|
@ -482,23 +638,57 @@ static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr)
|
|||
return INT_MAX;
|
||||
}
|
||||
|
||||
static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
||||
if (buffer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
// find highest prio backend that supports the buffer type
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
||||
return sched->backends[i];
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
|
||||
}
|
||||
|
||||
static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
|
||||
if (allocr == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
// find highest prio backend that supports the buffer type
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->tallocs[i] == allocr) {
|
||||
return sched->backends[i];
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
#if 0
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
||||
#define GET_CAUSE(node) causes[hash_id(node)]
|
||||
#else
|
||||
#define SET_CAUSE(node, ...)
|
||||
#define GET_CAUSE(node) ""
|
||||
#endif
|
||||
|
||||
// returns the backend that should be used for the node based on the current locations
|
||||
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
|
||||
// ie. kv cache updates
|
||||
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
|
||||
// dst
|
||||
ggml_backend_t cur_backend = ggml_get_backend(node);
|
||||
ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
|
||||
if (cur_backend != NULL) {
|
||||
sprintf(causes[hash_id(node)], "1.dst");
|
||||
SET_CAUSE(node, "1.dst");
|
||||
return cur_backend;
|
||||
}
|
||||
|
||||
// view_src
|
||||
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
|
||||
sprintf(causes[hash_id(node)], "1.vsrc");
|
||||
return ggml_get_backend(node->view_src);
|
||||
if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
|
||||
SET_CAUSE(node, "1.vsrc");
|
||||
return get_buffer_backend(sched, node->view_src->buffer);
|
||||
}
|
||||
|
||||
// src
|
||||
|
@ -510,7 +700,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
|||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_backend_t src_backend = ggml_get_backend(src);
|
||||
ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
|
||||
if (src_backend != NULL) {
|
||||
int src_prio = sched_backend_prio(sched, src_backend);
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
|
@ -518,7 +708,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
|||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
cur_backend = src_backend;
|
||||
sprintf(causes[hash_id(node)], "1.src%d", i);
|
||||
SET_CAUSE(node, "1.src%d", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -539,10 +729,12 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
|||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
|
||||
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
|
||||
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
|
||||
ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
|
||||
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
|
||||
sched->splits[cur_split].n_inputs);
|
||||
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
|
||||
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
|
||||
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
|
||||
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
cur_split++;
|
||||
|
@ -552,16 +744,18 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
|||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
|
||||
ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
|
||||
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
|
||||
ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
|
||||
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
|
||||
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
@ -587,9 +781,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
sched->n_splits = 0;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size = */ sizeof(sched->context_buffer),
|
||||
/*.mem_buffer = */ sched->context_buffer,
|
||||
/*.no_alloc = */ true
|
||||
/* .mem_size = */ sizeof(sched->context_buffer),
|
||||
/* .mem_buffer = */ sched->context_buffer,
|
||||
/* .no_alloc = */ true
|
||||
};
|
||||
|
||||
if (sched->ctx != NULL) {
|
||||
|
@ -605,9 +799,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
|
||||
ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
|
||||
if (leaf_backend == NULL && leaf->view_src != NULL) {
|
||||
leaf_backend = ggml_get_backend(leaf->view_src);
|
||||
leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
|
||||
}
|
||||
if (leaf_backend != NULL) {
|
||||
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
|
||||
|
@ -649,7 +843,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
node_allocr = src_allocr;
|
||||
sprintf(causes[hash_id(node)], "2.src%d", j);
|
||||
SET_CAUSE(node, "2.src%d", j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -733,7 +927,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
|
@ -761,8 +955,8 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
|
||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
||||
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
|
||||
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
|
||||
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
||||
j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -773,7 +967,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
|
@ -806,31 +1000,29 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
|
||||
ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
|
||||
int split_backend_id = sched_backend_prio(sched, split_backend);
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
uint64_t copy_start_us = ggml_time_us();
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
|
||||
if (split->inputs[j]->buffer == NULL) {
|
||||
if (split->inputs[j]->view_src == NULL) {
|
||||
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
|
||||
if (input->buffer == NULL) {
|
||||
if (input->view_src == NULL) {
|
||||
fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
|
||||
exit(1);
|
||||
}
|
||||
struct ggml_tensor * view = split->inputs[j];
|
||||
view->backend = view->view_src->backend;
|
||||
view->buffer = view->view_src->buffer;
|
||||
view->data = (char *)view->view_src->data + view->view_offs;
|
||||
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
|
||||
// FIXME: may need to use the sched buffer instead
|
||||
ggml_backend_view_init(input->view_src->buffer, input);
|
||||
}
|
||||
if (input_cpy->buffer == NULL) {
|
||||
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
|
||||
exit(1);
|
||||
}
|
||||
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
|
||||
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
||||
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
|
||||
//GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
|
||||
//GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
int64_t copy_end_us = ggml_time_us();
|
||||
|
@ -843,7 +1035,7 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||
#endif
|
||||
|
||||
uint64_t compute_start_us = ggml_time_us();
|
||||
ggml_backend_graph_compute(split_backend, split->graph);
|
||||
ggml_backend_graph_compute(split_backend, &split->graph);
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
uint64_t compute_end_us = ggml_time_us();
|
||||
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
||||
|
@ -872,8 +1064,6 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_bac
|
|||
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
|
||||
memset(sched, 0, sizeof(struct ggml_backend_sched));
|
||||
|
||||
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
sched->backends[i] = backends[i];
|
||||
|
@ -948,3 +1138,182 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
|
|||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
node_allocr(node) = sched->tallocs[backend_index];
|
||||
}
|
||||
|
||||
// utils
|
||||
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
GGML_ASSERT(tensor->view_src->data != NULL);
|
||||
|
||||
tensor->buffer = buffer;
|
||||
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
||||
tensor->backend = tensor->view_src->backend;
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src == NULL);
|
||||
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
|
||||
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
|
||||
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
|
||||
|
||||
tensor->buffer = buffer;
|
||||
tensor->data = addr;
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
||||
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
|
||||
|
||||
GGML_ASSERT(src != NULL);
|
||||
GGML_ASSERT(src->data && "graph must be allocated");
|
||||
|
||||
size_t id = ggml_hash_insert(hash_set, src);
|
||||
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
|
||||
return node_copies[ggml_hash_find(hash_set, src)];
|
||||
}
|
||||
|
||||
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
|
||||
if (src->view_src != NULL) {
|
||||
dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
|
||||
dst->view_offs = src->view_offs;
|
||||
}
|
||||
dst->op = src->op;
|
||||
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
|
||||
ggml_set_name(dst, src->name);
|
||||
|
||||
// copy src
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * s = src->src[i];
|
||||
if (s == NULL) {
|
||||
break;
|
||||
}
|
||||
dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
|
||||
}
|
||||
|
||||
node_copies[id] = dst;
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
||||
size_t id = ggml_hash_find(hash_set, src);
|
||||
if (node_init[id]) {
|
||||
return;
|
||||
}
|
||||
node_init[id] = true;
|
||||
|
||||
struct ggml_tensor * dst = node_copies[id];
|
||||
if (dst->view_src != NULL) {
|
||||
ggml_backend_view_init(dst->view_src->buffer, dst);
|
||||
}
|
||||
else {
|
||||
ggml_backend_tensor_copy(src, dst);
|
||||
}
|
||||
|
||||
// init src
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * s = src->src[i];
|
||||
if (s == NULL) {
|
||||
break;
|
||||
}
|
||||
graph_init_tensor(hash_set, node_copies, node_init, s);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = {
|
||||
/* .size = */ graph->visited_hash_table.size,
|
||||
/* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
|
||||
};
|
||||
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
|
||||
bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
||||
/* .mem_buffer = */ NULL,
|
||||
/* .no_alloc = */ true
|
||||
};
|
||||
|
||||
struct ggml_context * ctx_allocated = ggml_init(params);
|
||||
struct ggml_context * ctx_unallocated = ggml_init(params);
|
||||
|
||||
// dup nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
|
||||
}
|
||||
|
||||
// allocate nodes
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
|
||||
|
||||
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
|
||||
|
||||
// copy data and init views
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
graph_init_tensor(hash_set, node_copies, node_init, node);
|
||||
}
|
||||
|
||||
// build graph copy
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
|
||||
graph_copy->nodes[i] = node_copy;
|
||||
}
|
||||
graph_copy->n_nodes = graph->n_nodes;
|
||||
|
||||
free(hash_set.keys);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
|
||||
return (struct ggml_backend_graph_copy) {
|
||||
/* .buffer = */ buffer,
|
||||
/* .ctx_allocated = */ ctx_allocated,
|
||||
/* .ctx_unallocated = */ ctx_unallocated,
|
||||
/* .graph = */ graph_copy,
|
||||
};
|
||||
}
|
||||
|
||||
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
||||
ggml_backend_buffer_free(copy.buffer);
|
||||
ggml_free(copy.ctx_allocated);
|
||||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
struct ggml_cgraph * g1 = graph;
|
||||
struct ggml_cgraph * g2 = copy.graph;
|
||||
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
//printf("eval %d/%d\n", i, g1->n_nodes);
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
|
||||
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
||||
|
||||
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
||||
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
||||
|
||||
ggml_backend_graph_compute(backend1, &g1v);
|
||||
ggml_backend_graph_compute(backend2, &g2v);
|
||||
|
||||
if (ggml_is_view_op(t1->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// compare results, calculate rms etc
|
||||
if (!callback(i, t1, t2, user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_graph_copy_free(copy);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue