Merge branch 'ggerganov:master' into master

This commit is contained in:
Behnam M 2024-01-10 15:05:36 -05:00 committed by GitHub
commit 8c67fb26ba
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 34 additions and 39 deletions

View file

@ -126,24 +126,7 @@ static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::str
} }
static std::string get_ftype(int ftype) { static std::string get_ftype(int ftype) {
switch (ftype) { return ggml_type_name(static_cast<ggml_type>(ftype));
case 0:
return "f32";
case 1:
return "f16";
case 2:
return "q4_0";
case 3:
return "q4_1";
case 6:
return "q5_0";
case 7:
return "q5_1";
case 8:
return "q8_0";
default:
throw std::runtime_error(format("%s: Unrecognized file type: %d\n", __func__, ftype));
}
} }
// //
@ -533,6 +516,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
buffer_size += n_tensors * 128 /* CLIP PADDING */; buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx; clip_ctx * new_clip = new clip_ctx;
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
new_clip->backend = ggml_backend_cuda_init(0); new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__); printf("%s: CLIP using CUDA backend\n", __func__);
@ -543,6 +527,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: CLIP using Metal backend\n", __func__); printf("%s: CLIP using Metal backend\n", __func__);
#endif #endif
if (!new_clip->backend) { if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init(); new_clip->backend = ggml_backend_cpu_init();
printf("%s: CLIP using CPU backend\n", __func__); printf("%s: CLIP using CPU backend\n", __func__);
@ -931,26 +916,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
ggml_type type = GGML_TYPE_Q4_1; ggml_type type = GGML_TYPE_Q4_1;
switch (itype) { assert(itype < GGML_TYPE_COUNT);
case 2: type = static_cast<ggml_type>(itype);
type = GGML_TYPE_Q4_0;
break;
case 3:
type = GGML_TYPE_Q4_1;
break;
case 6:
type = GGML_TYPE_Q5_0;
break;
case 7:
type = GGML_TYPE_Q5_1;
break;
case 8:
type = GGML_TYPE_Q8_0;
break;
default:
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
return false;
};
auto * ctx_clip = clip_model_load(fname_inp, 2); auto * ctx_clip = clip_model_load(fname_inp, 2);
@ -1010,6 +977,10 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
if (quantize) { if (quantize) {
new_type = type; new_type = type;
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
// fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
}
const size_t n_elms = ggml_nelements(cur); const size_t n_elms = ggml_nelements(cur);
float * f32_data; float * f32_data;
@ -1054,6 +1025,21 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
case GGML_TYPE_Q8_0: { case GGML_TYPE_Q8_0: {
new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break; } break;
case GGML_TYPE_Q2_K: {
new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q3_K: {
new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_K: {
new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_K: {
new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q6_K: {
new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
default: { default: {
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type); fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
return false; return false;

View file

@ -2829,6 +2829,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
@ -3145,7 +3146,15 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); if (ml.n_elements >= 1e12) {
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
} else if (ml.n_elements >= 1e9) {
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
} else if (ml.n_elements >= 1e6) {
LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
} else {
LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
}
if (ml.n_bytes < GiB) { if (ml.n_bytes < GiB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else { } else {