Merge branch 'master' into compilade/mamba2

This commit is contained in:
Francis Couture-Harpin 2024-11-04 14:30:18 -05:00
commit 8d8f065743
56 changed files with 15958 additions and 20295 deletions

View file

@ -305,27 +305,10 @@ extern "C" {
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
// CPU buffer types are always available
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
#ifdef __cplusplus
}
#endif

38
ggml/include/ggml-cpp.h Normal file
View file

@ -0,0 +1,38 @@
#pragma once
#ifndef __cplusplus
#error "This header is for C++ only"
#endif
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include <memory>
// Smart pointers for ggml types
// ggml
struct ggml_context_deleter { void operator()(ggml_context * ctx) { ggml_free(ctx); } };
struct gguf_context_deleter { void operator()(gguf_context * ctx) { gguf_free(ctx); } };
typedef std::unique_ptr<ggml_context, ggml_context_deleter> ggml_context_ptr;
typedef std::unique_ptr<gguf_context, gguf_context_deleter> gguf_context_ptr;
// ggml-alloc
struct ggml_gallocr_deleter { void operator()(ggml_gallocr_t galloc) { ggml_gallocr_free(galloc); } };
typedef std::unique_ptr<ggml_gallocr_t, ggml_gallocr_deleter> ggml_gallocr_ptr;
// ggml-backend
struct ggml_backend_deleter { void operator()(ggml_backend_t backend) { ggml_backend_free(backend); } };
struct ggml_backend_buffer_deleter { void operator()(ggml_backend_buffer_t buffer) { ggml_backend_buffer_free(buffer); } };
struct ggml_backend_event_deleter { void operator()(ggml_backend_event_t event) { ggml_backend_event_free(event); } };
struct ggml_backend_sched_deleter { void operator()(ggml_backend_sched_t sched) { ggml_backend_sched_free(sched); } };
typedef std::unique_ptr<ggml_backend, ggml_backend_deleter> ggml_backend_ptr;
typedef std::unique_ptr<ggml_backend_buffer, ggml_backend_buffer_deleter> ggml_backend_buffer_ptr;
typedef std::unique_ptr<ggml_backend_event, ggml_backend_event_deleter> ggml_backend_event_ptr;
typedef std::unique_ptr<ggml_backend_sched, ggml_backend_sched_deleter> ggml_backend_sched_ptr;

150
ggml/include/ggml-cpu.h Normal file
View file

@ -0,0 +1,150 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
// TODO: move to backend interface
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
// get the sve vector length in bytes
GGML_API int ggml_cpu_get_sve_cnt(void);
// Internal types and functions exposed for tests and benchmarks
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits_cpu {
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
};
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
GGML_API void ggml_cpu_init(void);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
#ifdef __cplusplus
}
#endif

View file

@ -558,10 +558,10 @@ extern "C" {
enum ggml_log_level {
GGML_LOG_LEVEL_NONE = 0,
GGML_LOG_LEVEL_INFO = 1,
GGML_LOG_LEVEL_WARN = 2,
GGML_LOG_LEVEL_ERROR = 3,
GGML_LOG_LEVEL_DEBUG = 4,
GGML_LOG_LEVEL_DEBUG = 1,
GGML_LOG_LEVEL_INFO = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_ERROR = 4,
GGML_LOG_LEVEL_CONT = 5, // continue previous log
};
@ -573,6 +573,13 @@ extern "C" {
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
@ -618,59 +625,6 @@ extern "C" {
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
//
// GUID
@ -693,9 +647,6 @@ extern "C" {
// accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
@ -797,8 +748,7 @@ extern "C" {
int64_t ne2,
int64_t ne3);
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
@ -808,35 +758,25 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
// Converts a flat index into coordinates
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_ATTRIBUTE_FORMAT(2, 3)
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
// Tensor flags
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
//
// operations on tensors with backpropagation
//
@ -2053,9 +1993,6 @@ extern "C" {
// automatic differentiation
//
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
@ -2087,27 +2024,6 @@ extern "C" {
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
@ -2278,6 +2194,8 @@ extern "C" {
} lbfgs;
};
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
@ -2309,12 +2227,6 @@ extern "C" {
ggml_opt_callback callback,
void * callback_data);
//
// tensor flags
//
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
//
// quantization
//
@ -2483,8 +2395,6 @@ extern "C" {
GGML_API int ggml_cpu_has_avx512_bf16(void);
GGML_API int ggml_cpu_has_amx_int8 (void);
GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_metal (void);
GGML_API int ggml_cpu_has_f16c (void);
@ -2501,17 +2411,9 @@ extern "C" {
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
GGML_API int ggml_cpu_has_cann (void);
GGML_API int ggml_cpu_has_llamafile (void);
// get the sve vector length in bytes
GGML_API int ggml_cpu_get_sve_cnt(void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
@ -2520,14 +2422,6 @@ extern "C" {
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits {
const char * type_name;
@ -2538,13 +2432,6 @@ extern "C" {
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_ref;
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
};
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);

View file

@ -1366,9 +1366,12 @@ endif()
add_library(ggml
../include/ggml.h
../include/ggml-cpu.h
../include/ggml-alloc.h
../include/ggml-backend.h
../include/ggml-cpp.h
ggml.c
ggml-cpu.c
ggml-alloc.c
ggml-backend.cpp
ggml-quants.c
@ -1393,7 +1396,7 @@ if (EMSCRIPTEN)
endif()
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
target_include_directories(ggml PUBLIC ../include)
target_include_directories(ggml PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
target_include_directories(ggml PRIVATE . ${GGML_EXTRA_INCLUDES})
target_link_directories (ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
target_compile_features (ggml PRIVATE c_std_11) # don't bump

View file

@ -7,6 +7,7 @@
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-impl.h"
#include <math.h>

File diff suppressed because it is too large Load diff

View file

@ -1227,7 +1227,6 @@ static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggm
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(hostPtr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cann_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_cann_host_buffer_free;
return buffer;

13791
ggml/src/ggml-cpu.c Normal file

File diff suppressed because it is too large Load diff

View file

@ -1297,11 +1297,17 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
if (err != cudaErrorPeerAccessAlreadyEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
}
} else {
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
if (err != cudaErrorPeerAccessNotEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
}
}
}

View file

@ -8,6 +8,7 @@
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
@ -36,6 +37,20 @@ extern "C" {
#endif
#endif
static inline int ggml_up32(int n) {
return (n + 31) & ~31;
}
//static inline int ggml_up64(int n) {
// return (n + 63) & ~63;
//}
static inline int ggml_up(int n, int m) {
// assert m is a power of 2
GGML_ASSERT((m & (m - 1)) == 0);
return (n + m - 1) & ~(m - 1);
}
//
// logging
//
@ -51,6 +66,74 @@ void ggml_log_callback_default(enum ggml_log_level level, const char * text, voi
#define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
#define GGML_DEBUG 0
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
// tensor params
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
assert(params_size <= GGML_MAX_OP_PARAMS);
memcpy(tensor->op_params, params, params_size);
}
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
return ((const int32_t *)(tensor->op_params))[i];
}
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value;
}
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
struct ggml_map_custom1_op_params {
ggml_custom1_op_t fun;
int n_tasks;
void * userdata;
};
struct ggml_map_custom2_op_params {
ggml_custom2_op_t fun;
int n_tasks;
void * userdata;
};
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
};
// bitset
typedef uint32_t ggml_bitset_t;
@ -204,6 +287,10 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
void * ggml_aligned_malloc(size_t size);
void ggml_aligned_free(void * ptr, size_t size);
// TODO: move to threading file
void ggml_critical_section_start(void);
void ggml_critical_section_end(void);
#ifdef __cplusplus
}
#endif

View file

@ -451,7 +451,14 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
#if !__has_feature(objc_arc)
[options release];
#endif
}
#if GGML_METAL_EMBED_LIBRARY
[src release];
#endif // GGML_METAL_EMBED_LIBRARY
}
}

View file

@ -12,6 +12,436 @@ using namespace metal;
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
constexpr constant static float kvalues_iq4nl_f[16] = {
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
};
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
}
template <typename type4x4>
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
}
template <typename type4x4>
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
}
}
template <typename type4x4>
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
}
}
template <typename type4x4>
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + md;
reg[i/2][2*(i%2)+1] = d * x1 + md;
}
}
template <typename type4x4>
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + m;
reg[i/2][2*(i%2)+1] = d * x1 + m;
}
}
template <typename type4x4>
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs);
const half d = xb->d;
for (int i = 0; i < 16; i++) {
reg[i/4][i%4] = (qs[i + 16*il] * d);
}
}
template <typename type4x4>
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
const float d = xb->d;
const float min = xb->dmin;
device const uint8_t * q = (device const uint8_t *)xb->qs;
float dl, ml;
uint8_t sc = xb->scales[il];
q = q + 32*(il/8) + 16*(il&1);
il = (il/2)%4;
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * q = (device const uint8_t *)xb->qs;
device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales;
q = q + 32 * (il/8) + 16 * (il&1);
h = h + 16 * (il&1);
uint8_t m = 1 << (il/2);
uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
((il/4)>0 ? 12 : 3);
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
const float ml = 4.f * dl;
il = (il/2) & 3;
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl *= coef;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
}
}
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
}
template <typename type4x4>
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
device const uchar * q = xb->qs;
short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.h;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
device const uint8_t * q = xb->qs;
device const uint8_t * qh = xb->qh;
short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1);
uint8_t ul = 1 << (il/2);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.f;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
const float qh_val = il<2 ? 16.f : 256.f;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
}
}
template <typename type4x4>
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * ql = (device const uint8_t *)xb->ql;
device const uint8_t * qh = (device const uint8_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales;
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
qh = qh + 32*(il/8) + 16*(il&1);
float sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
const float coef = il>1 ? 1.f/16.f : 1.f;
const float ml = d_all * sc * 32.f;
const float dl = d_all * sc * coef;
for (int i = 0; i < 16; ++i) {
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
reg[i/4][i%4] = dl * q - ml;
}
}
template <typename type4x4>
void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
// each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
device const uint16_t * q2 = xb->qs + 4*ib32;
const uint32_t aux32_g = q2[0] | (q2[1] << 16);
const uint32_t aux32_s = q2[2] | (q2[3] << 16);
thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint16_t * q2 = xb->qs + 4*ib32;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
signs = ksigns_iq2xs[q2[2*il+1] >> 9];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * q3 = xb->qs + 8*ib32;
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
const uint32_t aux32 = gas[0] | (gas[1] << 16);
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 8*ib32;
device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
}
grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
}
}
template <typename type4x4>
void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * signs = qs + QK_K/8;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
for (int i = 0; i < 8; ++i) {
reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
}
}
template <typename type4x4>
void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
const float d = xb->d;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint16_t * qh = xb->qh;
const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
const uint16_t h = qh[ib32] >> 6*il;
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml;
reg[1][i] = dl * (grid1[i] >> 4) + ml;
reg[2][i] = dl * (grid2[i] & 0xf) + ml;
reg[3][i] = dl * (grid2[i] >> 4) + ml;
}
}
template <typename type4x4>
void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
device const uint16_t * sc = (device const uint16_t *)xb->scales;
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = scale.f16;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * qh = xb->qh + 2*ib32 + il;
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
reg[1][i] = dl * (grid1[i] >> 4) + ml1;
reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
reg[3][i] = dl * (grid2[i] >> 4) + ml2;
}
}
template <typename type4x4>
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
const float d = xb->d;
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
template <typename type4x4>
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
const float d = (float)xb->d * (ls - 32);
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
@ -2868,11 +3298,11 @@ kernel void kernel_flash_attn_ext_vec_f16(
const short iv3 = iq3 / rv3;
// load the queries from shared memory into local memory
float4 mq[D4];
float4 mq[D4/NW];
for (short ii = 0; ii < D4; ii += NW) {
short i = ii + tiisg;
mq[i] = (float4) sq4[i];
mq[ii/NW] = (float4) sq4[i];
}
// pointer to the mask
@ -2904,7 +3334,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
mk[2] = (float4) pk4[i + 2*(nb11/8)];
mk[3] = (float4) pk4[i + 3*(nb11/8)];
mqk += (float4) (mq[i] * mk);
mqk += (float4) (mq[ii/NW] * mk);
}
// reduce the results from the threads in the simdgroup
@ -2949,8 +3379,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
// O = diag(ms)*O
#pragma unroll
for (short ii = 0; ii < D4; ii += NW) {
const short i = ii + tiisg;
lo[i/NW] *= ms;
lo[ii/NW] *= ms;
}
}
@ -2964,10 +3393,10 @@ kernel void kernel_flash_attn_ext_vec_f16(
for (short ii = 0; ii < D4; ii += NW) {
const short i = ii + tiisg;
lo[i/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0];
lo[i/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1];
lo[i/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2];
lo[i/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3];
lo[ii/NW] += pv4[i + 0*(nb21/8)] * ss[4*cc + 0];
lo[ii/NW] += pv4[i + 1*(nb21/8)] * ss[4*cc + 1];
lo[ii/NW] += pv4[i + 2*(nb21/8)] * ss[4*cc + 2];
lo[ii/NW] += pv4[i + 3*(nb21/8)] * ss[4*cc + 3];
}
}
}
@ -3432,10 +3861,6 @@ static inline int best_index_int8(int n, constant float * val, float x) {
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
constexpr constant static float kvalues_iq4nl_f[16] = {
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
};
kernel void kernel_cpy_f32_iq4_nl(
device const float * src0,
device void * dst,
@ -5550,440 +5975,6 @@ kernel void kernel_mul_mv_iq4_xs_f32(
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
}
//============================= templates and their specializations =============================
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
float4x4 temp = *(((device float4x4 *)src));
for (int i = 0; i < 16; i++){
reg[i/4][i%4] = temp[i/4][i%4];
}
}
template <typename type4x4>
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
half4x4 temp = *(((device half4x4 *)src));
for (int i = 0; i < 16; i++){
reg[i/4][i%4] = temp[i/4][i%4];
}
}
template <typename type4x4>
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
}
}
template <typename type4x4>
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
}
}
template <typename type4x4>
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + md;
reg[i/2][2*(i%2)+1] = d * x1 + md;
}
}
template <typename type4x4>
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + m;
reg[i/2][2*(i%2)+1] = d * x1 + m;
}
}
template <typename type4x4>
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs);
const half d = xb->d;
for (int i = 0; i < 16; i++) {
reg[i/4][i%4] = (qs[i + 16*il] * d);
}
}
template <typename type4x4>
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
const float d = xb->d;
const float min = xb->dmin;
device const uint8_t * q = (device const uint8_t *)xb->qs;
float dl, ml;
uint8_t sc = xb->scales[il];
q = q + 32*(il/8) + 16*(il&1);
il = (il/2)%4;
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * q = (device const uint8_t *)xb->qs;
device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales;
q = q + 32 * (il/8) + 16 * (il&1);
h = h + 16 * (il&1);
uint8_t m = 1 << (il/2);
uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
((il/4)>0 ? 12 : 3);
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
const float ml = 4.f * dl;
il = (il/2) & 3;
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl *= coef;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
}
}
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
}
template <typename type4x4>
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
device const uchar * q = xb->qs;
short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.h;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
device const uint8_t * q = xb->qs;
device const uint8_t * qh = xb->qh;
short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1);
uint8_t ul = 1 << (il/2);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.f;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
const float qh_val = il<2 ? 16.f : 256.f;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
}
}
template <typename type4x4>
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * ql = (device const uint8_t *)xb->ql;
device const uint8_t * qh = (device const uint8_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales;
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
qh = qh + 32*(il/8) + 16*(il&1);
float sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
const float coef = il>1 ? 1.f/16.f : 1.f;
const float ml = d_all * sc * 32.f;
const float dl = d_all * sc * coef;
for (int i = 0; i < 16; ++i) {
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
reg[i/4][i%4] = dl * q - ml;
}
}
template <typename type4x4>
void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
// each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
device const uint16_t * q2 = xb->qs + 4*ib32;
const uint32_t aux32_g = q2[0] | (q2[1] << 16);
const uint32_t aux32_s = q2[2] | (q2[3] << 16);
thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint16_t * q2 = xb->qs + 4*ib32;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
signs = ksigns_iq2xs[q2[2*il+1] >> 9];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * q3 = xb->qs + 8*ib32;
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
const uint32_t aux32 = gas[0] | (gas[1] << 16);
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 8*ib32;
device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
}
grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
}
}
template <typename type4x4>
void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * signs = qs + QK_K/8;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
for (int i = 0; i < 8; ++i) {
reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
}
}
template <typename type4x4>
void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
const float d = xb->d;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint16_t * qh = xb->qh;
const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
const uint16_t h = qh[ib32] >> 6*il;
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml;
reg[1][i] = dl * (grid1[i] >> 4) + ml;
reg[2][i] = dl * (grid2[i] & 0xf) + ml;
reg[3][i] = dl * (grid2[i] >> 4) + ml;
}
}
template <typename type4x4>
void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
device const uint16_t * sc = (device const uint16_t *)xb->scales;
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = scale.f16;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * qh = xb->qh + 2*ib32 + il;
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
reg[1][i] = dl * (grid1[i] >> 4) + ml1;
reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
reg[3][i] = dl * (grid2[i] >> 4) + ml2;
}
}
template <typename type4x4>
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
const float d = xb->d;
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
template <typename type4x4>
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
const float d = (float)xb->d * (ls - 32);
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
kernel void kernel_get_rows_q(
device const void * src0,

View file

@ -4,7 +4,7 @@
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include <math.h>
#include <string.h>

View file

@ -1296,13 +1296,6 @@ static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_b
UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_rpc_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
UNUSED(dev);
UNUSED(max_tensor_size);
}
static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
UNUSED(dev);
UNUSED(op);
@ -1328,7 +1321,7 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
/* .init_backend = */ ggml_backend_rpc_device_init,
/* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_rpc_device_buffer_from_ptr,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_rpc_device_supports_op,
/* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
/* .offload_op = */ NULL,

View file

@ -1047,7 +1047,6 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
return buf;
}
buf->size = size;
vk::BufferCreateInfo buffer_create_info{
vk::BufferCreateFlags(),
size,
@ -1075,7 +1074,6 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
if (memory_type_index == UINT32_MAX) {
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
}
@ -1092,13 +1090,11 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
}
catch (const vk::SystemError& e) {
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw e;
}
} else {
// Out of Host/Device memory, clean up buffer
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw e;
}
}
@ -1111,6 +1107,7 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
buf->device = device;
buf->size = size;
#ifdef GGML_VULKAN_MEMORY_DEBUG
device->memory_logger->log_allocation(buf, size);

File diff suppressed because it is too large Load diff