ggml : remove obsolete assert + refactor n_tasks section
This commit is contained in:
parent
9c9bdaf0b8
commit
8dc7f104f8
1 changed files with 287 additions and 290 deletions
101
ggml.c
101
ggml.c
|
@ -10717,8 +10717,6 @@ static void ggml_compute_forward_mul_mat(
|
|||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
||||
|
||||
assert(ne00 % 32 == 0);
|
||||
|
||||
for (int64_t ic = 0; ic < ne11; ++ic) {
|
||||
vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
|
||||
}
|
||||
|
@ -16078,28 +16076,26 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
n_threads = GGML_DEFAULT_N_THREADS;
|
||||
}
|
||||
|
||||
size_t work_size = 0;
|
||||
|
||||
struct ggml_cplan cplan;
|
||||
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||||
|
||||
int * n_tasks = cplan.n_tasks;
|
||||
|
||||
size_t work_size = 0;
|
||||
|
||||
// initialize tasks + work buffer
|
||||
{
|
||||
// thread scheduling for the different operations
|
||||
// thread scheduling for the different operations + work buffer size estimation
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
int n_tasks = 1;
|
||||
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
if (ggml_is_quantized(node->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks[i];
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
|
@ -16107,24 +16103,24 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks[i];
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_ACC:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (ggml_is_quantized(node->src0->type)) {
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks[i];
|
||||
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
|
@ -16148,7 +16144,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_ELU:
|
||||
case GGML_OP_RELU:
|
||||
{
|
||||
n_tasks[i] = 1;
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_GELU:
|
||||
|
@ -16159,32 +16155,32 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
// TODO: use different scheduling for different matrix sizes
|
||||
//const int nr0 = ggml_nrows(node->src0);
|
||||
//const int nr1 = ggml_nrows(node->src1);
|
||||
|
||||
//n_tasks[i] = MIN(n_threads, MAX(1, nr0/128));
|
||||
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, n_tasks[i]);
|
||||
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
|
||||
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
|
||||
|
||||
size_t cur = 0;
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
||||
n_tasks[i] = 1; // TODO: this actually is doing nothing
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
}
|
||||
else
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
|
||||
n_tasks[i] = 1; // TODO: this actually is doing nothing
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
|
||||
}
|
||||
|
@ -16192,7 +16188,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
#endif
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
n_tasks[i] = 1; // TODO: this actually is doing nothing
|
||||
n_tasks = 1; // TODO: this actually is doing nothing
|
||||
// the threads are still spinning
|
||||
if (node->src0->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
|
@ -16210,7 +16206,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
n_tasks[i] = 1;
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
|
@ -16223,7 +16219,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_DIAG:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
{
|
||||
n_tasks[i] = 1;
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
|
@ -16231,19 +16227,19 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_ALIBI:
|
||||
{
|
||||
n_tasks[i] = 1; //TODO
|
||||
n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CLAMP:
|
||||
{
|
||||
n_tasks[i] = 1; //TODO
|
||||
n_tasks = 1; //TODO
|
||||
} break;
|
||||
case GGML_OP_CONV_1D:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src0->ne[3] == 1);
|
||||
GGML_ASSERT(node->src1->ne[2] == 1);
|
||||
|
@ -16272,7 +16268,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
GGML_ASSERT(node->src1->ne[3] == 1);
|
||||
|
||||
|
@ -16307,45 +16303,45 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
} break;
|
||||
case GGML_OP_FLASH_ATTN:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*ne11*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*ne11*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*ne11*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*ne11*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_FF:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
|
@ -16353,13 +16349,13 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
||||
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
|
||||
if (node->src1->type == GGML_TYPE_F32) {
|
||||
cur = sizeof(float)*mxDn*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
if (node->src1->type == GGML_TYPE_F16) {
|
||||
cur = sizeof(float)*mxDn*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks[i]; // this is overestimated by x2
|
||||
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
|
||||
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
|
||||
}
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
|
@ -16372,34 +16368,35 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
|||
case GGML_OP_MAP_CUSTOM2:
|
||||
case GGML_OP_MAP_CUSTOM3:
|
||||
{
|
||||
n_tasks[i] = 1;
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*(n_tasks[i] + node->src0->ne[0]*n_tasks[i]);
|
||||
size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
{
|
||||
n_tasks[i] = n_threads;
|
||||
n_tasks = n_threads;
|
||||
|
||||
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks[i];
|
||||
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
|
||||
|
||||
work_size = MAX(work_size, cur);
|
||||
} break;
|
||||
case GGML_OP_NONE:
|
||||
{
|
||||
n_tasks[i] = 1;
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
cplan.n_tasks[i] = n_tasks;
|
||||
}
|
||||
|
||||
if (work_size > 0) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue