ggml : remove obsolete assert + refactor n_tasks section

This commit is contained in:
Georgi Gerganov 2023-07-06 21:28:10 +03:00
parent 9c9bdaf0b8
commit 8dc7f104f8
No known key found for this signature in database
GPG key ID: 449E073F9DC10735

577
ggml.c
View file

@ -10717,8 +10717,6 @@ static void ggml_compute_forward_mul_mat(
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
assert(ne00 % 32 == 0);
for (int64_t ic = 0; ic < ne11; ++ic) {
vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
}
@ -16078,328 +16076,327 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
n_threads = GGML_DEFAULT_N_THREADS;
}
size_t work_size = 0;
struct ggml_cplan cplan;
memset(&cplan, 0, sizeof(struct ggml_cplan));
int * n_tasks = cplan.n_tasks;
// thread scheduling for the different operations + work buffer size estimation
for (int i = 0; i < cgraph->n_nodes; i++) {
int n_tasks = 1;
size_t work_size = 0;
struct ggml_tensor * node = cgraph->nodes[i];
// initialize tasks + work buffer
{
// thread scheduling for the different operations
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
n_tasks = n_threads;
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
n_tasks[i] = n_threads;
size_t cur = 0;
if (ggml_is_quantized(node->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
}
size_t cur = 0;
if (ggml_is_quantized(node->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks[i];
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
n_tasks = n_threads;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
n_tasks[i] = n_threads;
size_t cur = 0;
size_t cur = 0;
if (ggml_is_quantized(node->src0->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
}
if (ggml_is_quantized(node->src0->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks[i];
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ACC:
{
n_tasks = n_threads;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ACC:
{
n_tasks[i] = n_threads;
size_t cur = 0;
size_t cur = 0;
if (ggml_is_quantized(node->src0->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
}
if (ggml_is_quantized(node->src0->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks[i];
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SUB:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_ABS:
case GGML_OP_SGN:
case GGML_OP_NEG:
case GGML_OP_STEP:
case GGML_OP_TANH:
case GGML_OP_ELU:
case GGML_OP_RELU:
{
n_tasks = 1;
} break;
case GGML_OP_MUL:
case GGML_OP_GELU:
case GGML_OP_GELU_QUICK:
case GGML_OP_SILU:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_MUL_MAT:
case GGML_OP_OUT_PROD:
{
n_tasks = n_threads;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SUB:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_ABS:
case GGML_OP_SGN:
case GGML_OP_NEG:
case GGML_OP_STEP:
case GGML_OP_TANH:
case GGML_OP_ELU:
case GGML_OP_RELU:
{
n_tasks[i] = 1;
} break;
case GGML_OP_MUL:
case GGML_OP_GELU:
case GGML_OP_GELU_QUICK:
case GGML_OP_SILU:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
{
n_tasks[i] = n_threads;
} break;
case GGML_OP_MUL_MAT:
case GGML_OP_OUT_PROD:
{
n_tasks[i] = n_threads;
// TODO: use different scheduling for different matrix sizes
//const int nr0 = ggml_nrows(node->src0);
//const int nr1 = ggml_nrows(node->src1);
// TODO: use different scheduling for different matrix sizes
//const int nr0 = ggml_nrows(node->src0);
//const int nr1 = ggml_nrows(node->src1);
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
//n_tasks[i] = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, n_tasks[i]);
size_t cur = 0;
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
size_t cur = 0;
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
n_tasks[i] = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
else
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
}
else
#elif defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
n_tasks[i] = 1; // TODO: this actually is doing nothing
// the threads are still spinning
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
}
else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
n_tasks[i] = 1; // TODO: this actually is doing nothing
// the threads are still spinning
if (node->src0->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
}
} else
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
if (node->src0->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
}
} else
#endif
if (node->src1->type != vec_dot_type) {
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
} else {
cur = 0;
}
if (node->src1->type != vec_dot_type) {
cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
} else {
cur = 0;
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SCALE:
{
n_tasks[i] = 1;
} break;
case GGML_OP_SET:
case GGML_OP_CONT:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
case GGML_OP_DIAG_MASK_ZERO:
{
n_tasks[i] = 1;
} break;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
{
n_tasks[i] = n_threads;
} break;
case GGML_OP_ALIBI:
{
n_tasks[i] = 1; //TODO
} break;
case GGML_OP_CLAMP:
{
n_tasks[i] = 1; //TODO
} break;
case GGML_OP_CONV_1D:
{
n_tasks[i] = n_threads;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SCALE:
{
n_tasks = 1;
} break;
case GGML_OP_SET:
case GGML_OP_CONT:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
case GGML_OP_DIAG_MASK_ZERO:
{
n_tasks = 1;
} break;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_ALIBI:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_CLAMP:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_CONV_1D:
{
n_tasks = n_threads;
GGML_ASSERT(node->src0->ne[3] == 1);
GGML_ASSERT(node->src1->ne[2] == 1);
GGML_ASSERT(node->src1->ne[3] == 1);
GGML_ASSERT(node->src0->ne[3] == 1);
GGML_ASSERT(node->src1->ne[2] == 1);
GGML_ASSERT(node->src1->ne[3] == 1);
size_t cur = 0;
const int nk = node->src0->ne[0];
size_t cur = 0;
const int nk = node->src0->ne[0];
if (node->src0->type == GGML_TYPE_F16 &&
if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(ggml_fp16_t)*(
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
);
} else if (node->src0->type == GGML_TYPE_F32 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*(
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CONV_2D:
{
n_tasks[i] = n_threads;
GGML_ASSERT(node->src1->ne[3] == 1);
const int64_t ne00 = node->src0->ne[0]; // W
const int64_t ne01 = node->src0->ne[1]; // H
const int64_t ne02 = node->src0->ne[2]; // C
const int64_t ne03 = node->src0->ne[3]; // N
const int64_t ne10 = node->src1->ne[0]; // W
const int64_t ne11 = node->src1->ne[1]; // H
const int64_t ne12 = node->src1->ne[2]; // C
const int64_t nk = ne00*ne01;
UNUSED(ne02);
UNUSED(ne03);
UNUSED(nk);
size_t cur = 0;
if (node->src0->type == GGML_TYPE_F16 &&
cur = sizeof(ggml_fp16_t)*(
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
);
} else if (node->src0->type == GGML_TYPE_F32 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
} else if (node->src0->type == GGML_TYPE_F32 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)* (ne10*ne11*ne12);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_ATTN:
{
n_tasks[i] = n_threads;
size_t cur = 0;
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*ne11*n_tasks[i]; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*ne11*n_tasks[i]; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_FF:
{
n_tasks[i] = n_threads;
size_t cur = 0;
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src1->ne[1]*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*node->src1->ne[1]*n_tasks[i]; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src1->ne[1]*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*node->src1->ne[1]*n_tasks[i]; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks[i] = n_threads;
size_t cur = 0;
const int64_t D = node->src0->ne[0];
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*mxDn*n_tasks[i]; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks[i]; // TODO: this can become (n_tasks[i]-1)
cur += sizeof(float)*mxDn*n_tasks[i]; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
{
n_tasks[i] = 1;
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
n_tasks[i] = n_threads;
size_t cur = ggml_type_size(node->type)*(n_tasks[i] + node->src0->ne[0]*n_tasks[i]);
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
n_tasks[i] = n_threads;
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks[i];
work_size = MAX(work_size, cur);
} break;
case GGML_OP_NONE:
{
n_tasks[i] = 1;
} break;
case GGML_OP_COUNT:
{
cur = sizeof(float)*(
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
);
} else {
GGML_ASSERT(false);
} break;
}
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CONV_2D:
{
n_tasks = n_threads;
GGML_ASSERT(node->src1->ne[3] == 1);
const int64_t ne00 = node->src0->ne[0]; // W
const int64_t ne01 = node->src0->ne[1]; // H
const int64_t ne02 = node->src0->ne[2]; // C
const int64_t ne03 = node->src0->ne[3]; // N
const int64_t ne10 = node->src1->ne[0]; // W
const int64_t ne11 = node->src1->ne[1]; // H
const int64_t ne12 = node->src1->ne[2]; // C
const int64_t nk = ne00*ne01;
UNUSED(ne02);
UNUSED(ne03);
UNUSED(nk);
size_t cur = 0;
if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
} else if (node->src0->type == GGML_TYPE_F32 &&
node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)* (ne10*ne11*ne12);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_ATTN:
{
n_tasks = n_threads;
size_t cur = 0;
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_FF:
{
n_tasks = n_threads;
size_t cur = 0;
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks = n_threads;
size_t cur = 0;
const int64_t D = node->src0->ne[0];
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src1->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
if (node->src1->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
{
n_tasks = 1;
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
n_tasks = n_threads;
size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
n_tasks = n_threads;
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_NONE:
{
n_tasks = 1;
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
cplan.n_tasks[i] = n_tasks;
}
if (work_size > 0) {