diagmask: move to a separate file

This commit is contained in:
Akarshan Biswas 2025-02-01 19:33:52 +05:30
parent 98f5fd2fd1
commit 8e86732cf2
No known key found for this signature in database
GPG key ID: 52A578A14B32134D
4 changed files with 62 additions and 55 deletions

View file

@ -34,6 +34,7 @@
#include "argsort.hpp"
#include "cpy.hpp"
#include "getrows.hpp"
#include "diagmask.hpp"
#include "gla.hpp"
#endif // GGML_SYCL_BACKEND_HPP

View file

@ -0,0 +1,53 @@
#include "diagmask.hpp"
#include <float.h>
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel,
const int n_past, const sycl::nd_item<3> & item_ct1) {
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1);
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (col >= ncols) {
return;
}
const int i = row * ncols + col;
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
static void diag_mask_inf_f32_sycl(const float * x, float * dst, const int ncols_x, const int nrows_x,
const int rows_per_channel, const int n_past, queue_ptr stream) {
const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
const sycl::range<3> block_nums(1, block_num_x, nrows_x);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
diag_mask_inf_f32(x, dst, ncols_x, rows_per_channel, n_past, item_ct1);
});
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) try {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(strcmp(dst->buffer->buft->iface.get_name(dst->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int nrows0 = ggml_nrows(dst->src[0]);
const int n_past = ((int32_t *) dst->op_params)[0];
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
} catch (const sycl::exception & exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
std::exit(1);
}
void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_diag_mask_inf(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View file

@ -0,0 +1,8 @@
#ifndef GGML_SYCL_DIAG_MASK
#define GGML_SYCL_DIAG_MASK
#include "common.hpp"
void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_DIAG_MASK

View file

@ -1463,24 +1463,6 @@ static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
}
}
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
const sycl::nd_item<3> &item_ct1) {
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (col >= ncols) {
return;
}
const int i = row*ncols + col;
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
static void scale_f32(const float * x, float * dst, const float scale, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
@ -1666,21 +1648,6 @@ static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
});
}
static void diag_mask_inf_f32_sycl(const float *x, float *dst,
const int ncols_x, const int nrows_x,
const int rows_per_channel, const int n_past,
queue_ptr stream) {
const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
const sycl::range<3> block_nums(1, block_num_x, nrows_x);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
diag_mask_inf_f32(x, dst, ncols_x,
rows_per_channel, n_past,
item_ct1);
});
}
static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
const struct ggml_tensor *src,
int64_t i3, int64_t i2,
@ -1962,24 +1929,6 @@ inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor *
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(dst->buffer));
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int nrows0 = ggml_nrows(dst->src[0]);
const int n_past = ((int32_t *) dst->op_params)[0];
dpct::queue_ptr main_stream = ctx.stream();
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
@ -2957,10 +2906,6 @@ static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_cpy(ctx, dst->src[0], dst);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented
ggml_sycl_op_rope(ctx, dst);