ggml : add ALiBi support for ggml_soft_max_ext (#5488)
* ggml : avoid recomputing alibi slopes (CPU) * llama : reuse hparams.f_max_alibi_bias in all cases ggml-ci * ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal) ggml-ci * ggml : handle all SRCs (do not break on first null) ggml-ci * tests : do not use slope for large soft_max accumulates too much error ggml-ci * ggml : alternative ALiBi without extra tensor We compute the slopes in the kernel ggml-ci * cuda : add ALiBi support in ggml_soft_max_ext ggml-ci * ggml : deprecate ggml_alibi * ggml : support multi-sequence ALiBi (Metal) ggml-ci * cuda : add multi-seq ALiBi + remote F16 soft_max ggml-ci * ggml : update deprecation message * ggml : fix pos ptr when no ALiBi ggml-ci * cuda : fix performance (pow -> powf) * cuda : precompute ALiBi constants * metal : pre-compute ALiBi slopes ggml-ci * llama : init kq_pos only if needed ggml-ci * test-backend-ops : add null pos test to soft_max test-backend-ops : replace soft_max tests ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
6e4e973b26
commit
8f1be0d42f
9 changed files with 348 additions and 357 deletions
263
ggml-cuda.cu
263
ggml-cuda.cu
|
@ -5956,149 +5956,31 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
|
|||
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template, bool need_check>
|
||||
static __global__ void soft_max_f16(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||
const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int rowx = blockIdx.x;
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||||
|
||||
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
||||
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
extern __shared__ half data_soft_max_f16[];
|
||||
half * buf_iw = data_soft_max_f16 + 0; // shared memory buffer for inter-warp communication
|
||||
// (shared memory) buffer to cache values between iterations:
|
||||
half2 * vals = vals_smem ? (half2 *) (buf_iw + WARP_SIZE) : (half2 *) (dst + rowx*ncols_data);
|
||||
// if the buffer is larger than max. shared memory per block, use dst as temp. buffer instead
|
||||
// in that case col_smem == col_data must be enforced to avoid race conditions
|
||||
|
||||
half2 max_val = make_half2(-INFINITY, -INFINITY);
|
||||
|
||||
#pragma unroll
|
||||
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
|
||||
const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
|
||||
const int col_smem = vals_smem ? col0 + tid : col_data;
|
||||
|
||||
const int ix = rowx*ncols_data + col_data;
|
||||
const int iy = rowy*ncols_data + col_data;
|
||||
|
||||
half2 val;
|
||||
if (need_check && col_data + 0 >= ncols_data) {
|
||||
val.x = -INFINITY;
|
||||
} else {
|
||||
val.x = x[ix + 0]*scale + (y ? y[iy + 0] : 0.0f);
|
||||
}
|
||||
if (need_check && col_data + WARP_SIZE >= ncols_data) {
|
||||
val.y = -INFINITY;
|
||||
} else {
|
||||
val.y = x[ix + WARP_SIZE]*scale + (y ? y[iy + WARP_SIZE] : 0.0f);
|
||||
}
|
||||
if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) {
|
||||
vals[col_smem] = val;
|
||||
}
|
||||
max_val = __hmax2(max_val, val);
|
||||
}
|
||||
|
||||
// find the max value in the block
|
||||
max_val = warp_reduce_max(max_val);
|
||||
if (block_size > WARP_SIZE) {
|
||||
if (warp_id == 0) {
|
||||
buf_iw[lane_id] = -INFINITY;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (lane_id == 0) {
|
||||
buf_iw[warp_id] = __hmax(max_val.x, max_val.y);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
max_val = __half2half2(buf_iw[lane_id]);
|
||||
max_val = warp_reduce_max(max_val);
|
||||
} else {
|
||||
max_val = __half2half2(__hmax(max_val.x, max_val.y));
|
||||
}
|
||||
|
||||
half2 tmp = make_half2(0.0f, 0.0f); // partial sums
|
||||
|
||||
#pragma unroll
|
||||
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
|
||||
const int col_smem = vals_smem ? col0 + tid : 2*col0 + 2*warp_id*WARP_SIZE + lane_id;
|
||||
|
||||
if (ncols_template == 0 && col_smem >= (vals_smem ? ncols_smem : ncols_data)) {
|
||||
break;
|
||||
}
|
||||
|
||||
const half2 val = h2exp(vals[col_smem] - max_val);
|
||||
|
||||
tmp += val;
|
||||
vals[col_smem] = val;
|
||||
}
|
||||
|
||||
// find the sum of exps in the block
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if (block_size > WARP_SIZE) {
|
||||
if (warp_id == 0) {
|
||||
buf_iw[lane_id] = 0.0f;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (lane_id == 0) {
|
||||
buf_iw[warp_id] = tmp.x + tmp.y;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
tmp = __half2half2(buf_iw[lane_id]);
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
} else {
|
||||
tmp = __half2half2(tmp.x + tmp.y);
|
||||
}
|
||||
|
||||
const half2 inv_sum = make_half2(1.0f, 1.0f) / tmp;
|
||||
|
||||
#pragma unroll
|
||||
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
|
||||
const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
|
||||
const int col_smem = vals_smem ? col0 + tid : col_data;
|
||||
|
||||
const int idst = rowx*ncols_data + col_data;
|
||||
const half2 result = vals[col_smem] * inv_sum;
|
||||
|
||||
if (need_check && col_data + 0 >= ncols_data) {
|
||||
return;
|
||||
}
|
||||
dst[idst] = result.x;
|
||||
|
||||
if (need_check && col_data + WARP_SIZE >= ncols_data) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[idst + WARP_SIZE] = result.y;
|
||||
}
|
||||
#else
|
||||
(void) x; (void) y; (void) dst; (void) ncols_par; (void) nrows_y; (void) scale;
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
|
||||
static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int rowx = blockIdx.x;
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
|
||||
|
||||
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
||||
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
float slope = 0.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = rowx/nrows_y; // head index
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exp);
|
||||
}
|
||||
|
||||
extern __shared__ float data_soft_max_f32[];
|
||||
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||
// shared memory buffer to cache values between iterations:
|
||||
|
@ -6117,7 +5999,8 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds
|
|||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (y ? y[iy] : 0.0f);
|
||||
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + slope*pos[col];
|
||||
|
||||
vals[col] = val;
|
||||
max_val = max(max_val, val);
|
||||
}
|
||||
|
@ -7589,89 +7472,53 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
|
|||
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
||||
}
|
||||
|
||||
static void soft_max_f16_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
|
||||
int nth = WARP_SIZE;
|
||||
while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const dim3 block_dims(nth, 1, 1);
|
||||
const dim3 block_nums(nrows_x, 1, 1);
|
||||
const size_t shmem = (GGML_PAD(ncols_x, 2*WARP_SIZE) + WARP_SIZE)*sizeof(half);
|
||||
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||
if (shmem <= g_device_caps[g_main_device].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f16<true, 32, 32, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f16<true, 64, 32, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f16<true, 128, 64, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f16<true, 256, 128, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f16<true, 512, 256, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f16<true, 1024, 512, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f16<true, 2048, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f16<true, 4096, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
default:
|
||||
soft_max_f16<true, 0, 0, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const size_t shmem_low = WARP_SIZE*sizeof(half);
|
||||
soft_max_f16<false, 0, 0, true><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
}
|
||||
}
|
||||
|
||||
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
|
||||
static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
||||
int nth = WARP_SIZE;
|
||||
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const dim3 block_dims(nth, 1, 1);
|
||||
const dim3 block_nums(nrows_x, 1, 1);
|
||||
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||
|
||||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
if (shmem < g_device_caps[g_main_device].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
default:
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const size_t shmem_low = WARP_SIZE*sizeof(float);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -9090,30 +8937,36 @@ static void ggml_cuda_op_soft_max(
|
|||
|
||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
|
||||
float scale = 1.0f;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION >= CUDART_HMAX
|
||||
#ifdef GGML_CUDA_F16
|
||||
const bool use_f16_soft_max = true;
|
||||
#else
|
||||
const bool use_f16_soft_max = false;
|
||||
#endif // GGML_CUDA_F16
|
||||
#else
|
||||
const bool use_f16_soft_max = false;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && CUDART_VERSION >= CUDART_HMAX
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
if (use_f16_soft_max) {
|
||||
soft_max_f16_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
|
||||
} else {
|
||||
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
|
||||
// positions tensor
|
||||
float * src2_dd = dst_dd; // default to avoid null checks in the kernel
|
||||
cuda_pool_alloc<float> src2_f;
|
||||
|
||||
ggml_tensor * src2 = dst->src[2];
|
||||
const bool use_src2 = src2 != nullptr;
|
||||
|
||||
if (use_src2) {
|
||||
const bool src2_on_device = use_src2 && src2->backend == GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * src2_extra = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
|
||||
|
||||
if (src2_on_device) {
|
||||
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
||||
} else {
|
||||
src2_dd = src2_f.alloc(ggml_nelements(src2));
|
||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
|
||||
}
|
||||
}
|
||||
|
||||
(void) dst;
|
||||
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_scale(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue