mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
This commit is contained in:
Francis Couture-Harpin 2024-02-26 20:25:23 -05:00
parent 79d636cc7e
commit 8f605cfe0d
5 changed files with 21 additions and 9 deletions

View file

@ -105,6 +105,9 @@ int main(int argc, char ** argv) {
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
// ensure enough sequences are available
ctx_params.n_parallel = *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
@ -174,10 +177,10 @@ int main(int argc, char ** argv) {
llama_batch_clear(batch);
const int n_tokens = is_pp_shared ? pp : pl*pp;
for (int i = 0; i < n_tokens; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
llama_batch_add(batch, 0, i, { j }, false);
}
}
batch.logits[batch.n_tokens - 1] = true;
@ -192,7 +195,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}

View file

@ -80,6 +80,7 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_parallel = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@ -132,7 +133,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
if (n_parallel > 1) {

View file

@ -809,7 +809,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1086,7 +1086,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 128;
const int max_seq = 2*max_tasks_per_batch;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1438,7 +1438,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1815,6 +1815,9 @@ int main(int argc, char ** argv) {
llama_model * model;
llama_context * ctx;
// ensure there's at least enough seq_ids for HellaSwag
params.n_parallel = std::max(4, params.n_parallel);
// load the model and apply lora adapter, if any
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {

View file

@ -12844,6 +12844,10 @@ uint32_t llama_n_batch(const struct llama_context * ctx) {
return ctx->cparams.n_batch;
}
uint32_t llama_n_max_seq(const struct llama_context * ctx) {
return ctx->kv_self.size;
}
enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
return model->vocab.type;
}

View file

@ -377,6 +377,7 @@ extern "C" {
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_max_seq (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);