add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.

had to increase maximum number of optimization parameters to train from scratch.
This commit is contained in:
xaedes 2023-05-01 19:30:04 +02:00
parent 1c4dc1e498
commit 8fde656d24
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
4 changed files with 664 additions and 1 deletions

View file

@ -36,4 +36,5 @@ else()
add_subdirectory(embedding) add_subdirectory(embedding)
add_subdirectory(save-load-state) add_subdirectory(save-load-state)
add_subdirectory(benchmark) add_subdirectory(benchmark)
add_subdirectory(baby-llama)
endif() endif()

View file

@ -0,0 +1,4 @@
set(TARGET baby-llama)
add_executable(${TARGET} baby-llama.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,658 @@
#include "ggml.h"
#include <vector>
#include <assert.h>
#include <random>
float frand() {
return (float)rand()/(float)RAND_MAX;
}
struct random_normal_distribution {
std::mt19937 gen;
std::normal_distribution<float> nd;
float min;
float max;
};
void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
rnd->gen = std::mt19937(seed);
rnd->nd = std::normal_distribution<float>{mean, std};
rnd->min = min;
rnd->max = max;
}
float frand_normal(struct random_normal_distribution * rnd) {
const float r = rnd->nd(rnd->gen);
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
}
struct ggml_tensor * randomize_tensor(
struct ggml_tensor * tensor,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
}
break;
default:
assert(false);
};
return tensor;
}
struct ggml_tensor * randomize_tensor_normal(
struct ggml_tensor * tensor,
int ndims,
int64_t ne[],
struct random_normal_distribution * rnd) {
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i0] = frand_normal(rnd);
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i1*ne[0] + i0] = frand_normal(rnd);
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
}
}
}
}
break;
default:
assert(false);
};
return tensor;
}
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const llama_hparams & other) const {
return memcmp(this, &other, sizeof(llama_hparams));
}
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_kv_cache {
struct ggml_context * ctx = NULL;
struct ggml_tensor * k;
struct ggml_tensor * v;
// llama_ctx_buffer buf;
int n; // number of tokens currently in the cache
};
struct llama_model {
struct ggml_context * ctx = NULL;
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
};
void init_model(struct llama_model * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
struct ggml_context * ctx = model->ctx;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd});
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight", {n_embd, n_vocab});
model->layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
// std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd});
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
void set_param_model(struct llama_model * model) {
const auto& hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
struct ggml_context* ctx = model->ctx;
ggml_set_param(ctx, model->tok_embeddings);
ggml_set_param(ctx, model->norm);
ggml_set_param(ctx, model->output);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
ggml_set_param(ctx, layer.attention_norm);
ggml_set_param(ctx, layer.wq);
ggml_set_param(ctx, layer.wk);
ggml_set_param(ctx, layer.wv);
ggml_set_param(ctx, layer.wo);
ggml_set_param(ctx, layer.ffn_norm);
ggml_set_param(ctx, layer.w1);
ggml_set_param(ctx, layer.w2);
ggml_set_param(ctx, layer.w3);
}
}
void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
struct random_normal_distribution rnd;
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd);
randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd);
randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd);
randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd);
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
}
}
bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model) {
const auto & hparams = model->hparams;
const int n_ctx = hparams.n_ctx;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
// struct ggml_init_params params;
// params.mem_size = cache.buf.size;
// params.mem_buffer = cache.buf.addr;
// params.no_alloc = false;
if (!cache->ctx) {
struct ggml_init_params params;
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
params.mem_buffer = NULL;
params.no_alloc = false;
cache->ctx = ggml_init(params);
if (!cache->ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
}
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
return true;
}
struct ggml_tensor * forward(
struct llama_model * model,
struct llama_kv_cache * cache,
struct ggml_context * ctx0,
struct ggml_cgraph * gf,
struct ggml_tensor * tokens_input,
const int n_tokens,
const int n_past) {
const int N = n_tokens;
struct llama_kv_cache& kv_self = *cache;
const auto & hparams = model->hparams;
const int n_ctx = hparams.n_ctx;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_head = hparams.n_head;
const int n_rot = hparams.n_rot;
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
// inpL shape [n_embd,N,1,1]
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
// lctx.use_buf(ctx0, 0);
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
cur);
}
// self-attention
{
// compute Q and K and RoPE them
// wq shape [n_embd, n_embd, 1, 1]
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Kcur shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
// wv shape [n_embd, n_embd, 1, 1]
// Vcur shape [n_embd, N, 1, 1]
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N));
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// kv_self.v shape [n_embd * n_ctx * n_layer, 1]
// k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
// v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Q shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// K shape [n_embd/n_head, n_past + N, n_head, 1]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
// KQ shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled =
ggml_scale_inplace(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
// KQ_soft_max shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// split cached V into n_head heads
//// V shape [n_past + N, n_embd/n_head, n_head, 1]
// V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
// KQV shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// KQV_merged shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// KQV_merged shape
// cur = KQV_merged.contiguous().view(n_embd, N)
// cur shape [n_embd,N,1,1]
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model->layers[il].wo,
cur);
}
// lctx.use_buf(ctx0, 1);
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF);
// cur = ffn_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
cur);
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model->layers[il].w3,
cur);
cur = ggml_mul_mat(ctx0,
model->layers[il].w1,
cur);
// SILU activation
cur = ggml_silu(ctx0, cur);
cur = ggml_mul(ctx0, cur, tmp);
cur = ggml_mul_mat(ctx0,
model->layers[il].w2,
cur);
}
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = cur;
}
// norm
{
inpL = ggml_rms_norm(ctx0, inpL);
// inpL = norm*inpL
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model->norm, inpL),
inpL);
//embeddings = inpL;
}
// lm_head
inpL = ggml_mul_mat(ctx0, model->output, inpL);
// run the computation
ggml_build_forward_expand(gf, inpL);
return inpL;
}
void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
assert(logits->n_dims == 2);
assert(probs->n_dims == 2);
assert(best_samples->n_dims == 1);
assert(logits->ne[1] == best_samples->ne[0]);
assert(logits->ne[0] == probs->ne[0]);
assert(logits->ne[1] == probs->ne[1]);
for (int i=0; i< logits->ne[1]; ++i) {
float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]);
ggml_set_i32_1d(best_samples, i, 0);
for (int k = 0; k < logits->ne[0]; ++k) {
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
if (logit > max_logit) {
max_logit = logit;
ggml_set_i32_1d(best_samples, i, k);
}
}
for (int k = 0; k < logits->ne[0]; ++k) {
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
float p = expf(logit - max_logit);
ggml_set_i32_1d(probs, i * probs->ne[0] + k, p);
}
}
}
void print_probs(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
for (int i=0; i<probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[1] + k);
printf(" %.1f", p);
}
printf("\n");
}
}
void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
for (int i=0; i<tokens->ne[0]; ++i) {
int token = ggml_get_i32_1d(tokens, i);
for (int k = 0; k < token; ++k) {
printf(" ");
}
printf("X");
for (int k = token+1; k < n_vocab; ++k) {
printf(" ");
}
printf("\n");
}
}
int main(int argc, char ** argv) {
struct ggml_init_params lcparams;
lcparams.mem_size = 1024*1024*1024;
lcparams.mem_buffer = NULL;
lcparams.no_alloc = false;
struct llama_model model;
model.hparams.n_vocab = 8;
model.hparams.n_ctx = 64;
model.hparams.n_embd = 64;
model.hparams.n_head = 8;
model.hparams.n_layer = 4;
model.hparams.n_rot = 16;
model.ctx = ggml_init(lcparams);
printf("init model\n");
init_model(&model);
set_param_model(&model);
randomize_model(&model, 1337, 0.0f, 2.0f, -1.0f, +1.0f);
// key + value cache for the self attention
struct llama_kv_cache kv_self;
printf("init_kv_cache\n");
kv_self.ctx = model.ctx;
init_kv_cache(&kv_self, &model);
struct ggml_init_params c0params;
c0params.mem_size = 1024*1024*1024;
c0params.mem_buffer = NULL;
c0params.no_alloc = false;
struct ggml_context * ctx0 = model.ctx; // ggml_init(c0params);
int n_tokens = 64;
struct ggml_tensor * before_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * before_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * after_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * targets = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
for (int i=0; i<n_tokens; ++i) {
float x = i * 3.14159f * 2.0f * 4.0f / n_tokens;
float y = sinf(x);
float z = (y+1.0f)*0.5f;
int token = (int)(z*(float)(model.hparams.n_vocab-1));
for (int k = 0; k < token; ++k) {
printf(" ");
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + k, -1.0f);
}
printf("X");
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + token, +1.0f);
for (int k = token+1; k < model.hparams.n_vocab; ++k) {
printf(" ");
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + k, -1.0f);
}
printf("\n");
ggml_set_i32_1d(tokens_input, i, token);
}
int n_past = 0;
ggml_cgraph gf = {};
gf.n_threads = 1;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past);
struct ggml_tensor * e = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, targets, logits)));
ggml_build_forward_expand(&gf, e);
ggml_graph_compute(ctx0, &gf);
float error_before_opt = ggml_get_f32_1d(e, 0);
sample_softmax(logits, before_opt_probs, before_opt_best_samples);
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
ggml_opt(ctx0, opt_params, e);
//
ggml_build_forward_expand(&gf, e);
ggml_graph_compute(ctx0, &gf);
float error_after_opt = ggml_get_f32_1d(e, 0);
sample_softmax(logits, after_opt_probs, after_opt_best_samples);
printf("error_before_opt: %.2f\n", error_before_opt);
printf("error_after_opt: %.2f\n", error_after_opt);
printf("probabilities before optimization:\n");
print_probs(before_opt_probs);
printf("best samples before optimization:\n");
print_tokens(before_opt_best_samples, model.hparams.n_vocab);
printf("probabilities after optimization:\n");
print_probs(after_opt_probs);
printf("best samples after optimization:\n");
print_tokens(after_opt_best_samples, model.hparams.n_vocab);
ggml_free(ctx0);
printf("done\n");
// ggml_free(kv_self.ctx);
// ggml_free(model.ctx);
return 0;
}

2
ggml.h
View file

@ -192,7 +192,7 @@
#define GGML_MAX_DIMS 4 #define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096 #define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16 #define GGML_MAX_PARAMS 32
#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4 #define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4