server: add comments
This commit is contained in:
parent
12829b2e64
commit
906afe7810
3 changed files with 266 additions and 255 deletions
|
@ -10,5 +10,199 @@
|
||||||
#include "json.hpp"
|
#include "json.hpp"
|
||||||
#include "utils.hpp"
|
#include "utils.hpp"
|
||||||
|
|
||||||
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||||
|
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
|
||||||
|
inline static json oaicompat_completion_params_parse(
|
||||||
|
const json &body /* openai api json semantics */)
|
||||||
|
{
|
||||||
|
json llama_params;
|
||||||
|
|
||||||
|
llama_params["__oaicompat"] = true;
|
||||||
|
|
||||||
|
// Map OpenAI parameters to llama.cpp parameters
|
||||||
|
//
|
||||||
|
// For parameters that are defined by the OpenAI documentation (e.g.
|
||||||
|
// temperature), we explicitly specify OpenAI's intended default; we
|
||||||
|
// need to do that because sometimes OpenAI disagrees with llama.cpp
|
||||||
|
//
|
||||||
|
// https://platform.openai.com/docs/api-reference/chat/create
|
||||||
|
llama_sampling_params default_sparams;
|
||||||
|
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
||||||
|
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||||
|
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||||
|
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||||
|
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
||||||
|
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||||
|
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
||||||
|
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
||||||
|
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
||||||
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||||
|
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||||
|
llama_params["stream"] = json_value(body, "stream", false);
|
||||||
|
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
||||||
|
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
||||||
|
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
||||||
|
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
||||||
|
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
||||||
|
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
||||||
|
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
||||||
|
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
||||||
|
|
||||||
|
if (body.count("grammar") != 0) {
|
||||||
|
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle 'stop' field
|
||||||
|
if (body.contains("stop") && body["stop"].is_string()) {
|
||||||
|
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
||||||
|
} else {
|
||||||
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Ensure there is ChatML-specific end sequence among stop words
|
||||||
|
llama_params["stop"].push_back("<|im_end|>");
|
||||||
|
|
||||||
|
return llama_params;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
|
||||||
|
{
|
||||||
|
json result = response.result_json;
|
||||||
|
|
||||||
|
bool stopped_word = result.count("stopped_word") != 0;
|
||||||
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||||
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
||||||
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
||||||
|
std::string content = json_value(result, "content", std::string(""));
|
||||||
|
|
||||||
|
std::string finish_reason = "length";
|
||||||
|
if (stopped_word || stopped_eos) {
|
||||||
|
finish_reason = "stop";
|
||||||
|
}
|
||||||
|
|
||||||
|
json choices =
|
||||||
|
streaming ? json::array({json{{"finish_reason", finish_reason},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta", json::object()}}})
|
||||||
|
: json::array({json{{"finish_reason", finish_reason},
|
||||||
|
{"index", 0},
|
||||||
|
{"message", json{{"content", content},
|
||||||
|
{"role", "assistant"}}}}});
|
||||||
|
|
||||||
|
std::time_t t = std::time(0);
|
||||||
|
|
||||||
|
json res =
|
||||||
|
json{{"choices", choices},
|
||||||
|
{"created", t},
|
||||||
|
{"model",
|
||||||
|
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
||||||
|
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
||||||
|
{"usage",
|
||||||
|
json{{"completion_tokens", num_tokens_predicted},
|
||||||
|
{"prompt_tokens", num_prompt_tokens},
|
||||||
|
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
|
||||||
|
{"id", gen_chatcmplid()}};
|
||||||
|
|
||||||
|
if (server_verbose) {
|
||||||
|
res["__verbose"] = result;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (result.contains("completion_probabilities")) {
|
||||||
|
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
// return value is vector as there is one case where we might need to generate two responses
|
||||||
|
inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
|
||||||
|
json result = response.result_json;
|
||||||
|
|
||||||
|
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
||||||
|
return std::vector<json>({response.result_json});
|
||||||
|
}
|
||||||
|
|
||||||
|
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
||||||
|
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
||||||
|
|
||||||
|
bool stopped_word = json_value(result, "stopped_word", false);
|
||||||
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||||
|
bool stopped_limit = json_value(result, "stopped_limit", false);
|
||||||
|
std::string content = json_value(result, "content", std::string(""));
|
||||||
|
|
||||||
|
std::string finish_reason;
|
||||||
|
if (stopped_word || stopped_eos) {
|
||||||
|
finish_reason = "stop";
|
||||||
|
}
|
||||||
|
if (stopped_limit) {
|
||||||
|
finish_reason = "length";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::time_t t = std::time(0);
|
||||||
|
|
||||||
|
json choices;
|
||||||
|
|
||||||
|
if (!finish_reason.empty()) {
|
||||||
|
choices = json::array({json{{"finish_reason", finish_reason},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta", json::object()}}});
|
||||||
|
} else {
|
||||||
|
if (first) {
|
||||||
|
if (content.empty()) {
|
||||||
|
choices = json::array({json{{"finish_reason", nullptr},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta", json{{"role", "assistant"}}}}});
|
||||||
|
} else {
|
||||||
|
// We have to send this as two updates to conform to openai behavior
|
||||||
|
json initial_ret = json{{"choices", json::array({json{
|
||||||
|
{"finish_reason", nullptr},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta", json{
|
||||||
|
{"role", "assistant"}
|
||||||
|
}}}})},
|
||||||
|
{"created", t},
|
||||||
|
{"id", gen_chatcmplid()},
|
||||||
|
{"model", modelname},
|
||||||
|
{"object", "chat.completion.chunk"}};
|
||||||
|
|
||||||
|
json second_ret = json{
|
||||||
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta", json{
|
||||||
|
{"content", content}}}
|
||||||
|
}})},
|
||||||
|
{"created", t},
|
||||||
|
{"id", gen_chatcmplid()},
|
||||||
|
{"model", modelname},
|
||||||
|
{"object", "chat.completion.chunk"}};
|
||||||
|
|
||||||
|
return std::vector<json>({initial_ret, second_ret});
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Some idiosyncrasy in task processing logic makes several trailing calls
|
||||||
|
// with empty content, we ignore these at the calee site.
|
||||||
|
if (content.empty()) {
|
||||||
|
return std::vector<json>({json::object()});
|
||||||
|
}
|
||||||
|
|
||||||
|
choices = json::array({json{
|
||||||
|
{"finish_reason", nullptr},
|
||||||
|
{"index", 0},
|
||||||
|
{"delta",
|
||||||
|
json{
|
||||||
|
{"content", content},
|
||||||
|
}},
|
||||||
|
}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
json ret = json{{"choices", choices},
|
||||||
|
{"created", t},
|
||||||
|
{"id", gen_chatcmplid()},
|
||||||
|
{"model", modelname},
|
||||||
|
{"object", "chat.completion.chunk"}};
|
||||||
|
|
||||||
|
return std::vector<json>({ret});
|
||||||
|
}
|
||||||
|
|
|
@ -2,6 +2,7 @@
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "grammar-parser.h"
|
#include "grammar-parser.h"
|
||||||
#include "utils.hpp"
|
#include "utils.hpp"
|
||||||
|
#include "oai.hpp"
|
||||||
|
|
||||||
#include "../llava/clip.h"
|
#include "../llava/clip.h"
|
||||||
|
|
||||||
|
@ -29,8 +30,6 @@
|
||||||
#include <condition_variable>
|
#include <condition_variable>
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
|
|
||||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
|
||||||
|
|
||||||
using json = nlohmann::json;
|
using json = nlohmann::json;
|
||||||
|
|
||||||
struct server_params
|
struct server_params
|
||||||
|
@ -45,9 +44,6 @@ struct server_params
|
||||||
|
|
||||||
bool server_verbose = false;
|
bool server_verbose = false;
|
||||||
|
|
||||||
json oaicompat_completion_params_parse(const json &body);
|
|
||||||
std::string format_chatml(std::vector<json> messages);
|
|
||||||
|
|
||||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||||
{
|
{
|
||||||
size_t i;
|
size_t i;
|
||||||
|
@ -143,15 +139,6 @@ static json probs_vector_to_json(const llama_context *ctx, const std::vector<com
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
static T json_value(const json &body, const std::string &key, const T &default_value)
|
|
||||||
{
|
|
||||||
// Fallback null to default value
|
|
||||||
return body.contains(key) && !body.at(key).is_null()
|
|
||||||
? body.value(key, default_value)
|
|
||||||
: default_value;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct llama_client_slot
|
struct llama_client_slot
|
||||||
{
|
{
|
||||||
int id;
|
int id;
|
||||||
|
@ -2264,239 +2251,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::string random_string()
|
|
||||||
{
|
|
||||||
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
||||||
|
|
||||||
std::random_device rd;
|
|
||||||
std::mt19937 generator(rd());
|
|
||||||
|
|
||||||
std::string result(32, ' ');
|
|
||||||
|
|
||||||
for (int i = 0; i < 32; ++i) {
|
|
||||||
result[i] = str[generator() % str.size()];
|
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
static std::string gen_chatcmplid()
|
|
||||||
{
|
|
||||||
std::stringstream chatcmplid;
|
|
||||||
chatcmplid << "chatcmpl-" << random_string();
|
|
||||||
return chatcmplid.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string format_chatml(std::vector<json> messages)
|
|
||||||
{
|
|
||||||
std::ostringstream chatml_msgs;
|
|
||||||
|
|
||||||
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
|
||||||
chatml_msgs << "<|im_start|>"
|
|
||||||
<< json_value(*it, "role", std::string("user")) << '\n';
|
|
||||||
chatml_msgs << json_value(*it, "content", std::string(""))
|
|
||||||
<< "<|im_end|>\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
chatml_msgs << "<|im_start|>assistant" << '\n';
|
|
||||||
|
|
||||||
return chatml_msgs.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
/* llama.cpp completion api semantics */
|
/* llama.cpp completion api semantics */
|
||||||
json oaicompat_completion_params_parse(
|
|
||||||
const json &body /* openai api json semantics */)
|
|
||||||
{
|
|
||||||
json llama_params;
|
|
||||||
|
|
||||||
llama_params["__oaicompat"] = true;
|
|
||||||
|
|
||||||
// Map OpenAI parameters to llama.cpp parameters
|
|
||||||
//
|
|
||||||
// For parameters that are defined by the OpenAI documentation (e.g.
|
|
||||||
// temperature), we explicitly specify OpenAI's intended default; we
|
|
||||||
// need to do that because sometimes OpenAI disagrees with llama.cpp
|
|
||||||
//
|
|
||||||
// https://platform.openai.com/docs/api-reference/chat/create
|
|
||||||
llama_sampling_params default_sparams;
|
|
||||||
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
|
||||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
|
||||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
|
||||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
|
||||||
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
|
||||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
|
||||||
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
|
||||||
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
|
||||||
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
|
||||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
|
||||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
|
||||||
llama_params["stream"] = json_value(body, "stream", false);
|
|
||||||
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
|
||||||
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
|
||||||
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
|
||||||
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
|
||||||
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
|
||||||
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
|
||||||
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
|
||||||
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
|
||||||
|
|
||||||
if (body.count("grammar") != 0) {
|
|
||||||
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Handle 'stop' field
|
|
||||||
if (body.contains("stop") && body["stop"].is_string()) {
|
|
||||||
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
|
||||||
} else {
|
|
||||||
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Ensure there is ChatML-specific end sequence among stop words
|
|
||||||
llama_params["stop"].push_back("<|im_end|>");
|
|
||||||
|
|
||||||
return llama_params;
|
|
||||||
}
|
|
||||||
|
|
||||||
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
|
|
||||||
{
|
|
||||||
json result = response.result_json;
|
|
||||||
|
|
||||||
bool stopped_word = result.count("stopped_word") != 0;
|
|
||||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
||||||
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
|
||||||
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
|
||||||
std::string content = json_value(result, "content", std::string(""));
|
|
||||||
|
|
||||||
std::string finish_reason = "length";
|
|
||||||
if (stopped_word || stopped_eos) {
|
|
||||||
finish_reason = "stop";
|
|
||||||
}
|
|
||||||
|
|
||||||
json choices =
|
|
||||||
streaming ? json::array({json{{"finish_reason", finish_reason},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta", json::object()}}})
|
|
||||||
: json::array({json{{"finish_reason", finish_reason},
|
|
||||||
{"index", 0},
|
|
||||||
{"message", json{{"content", content},
|
|
||||||
{"role", "assistant"}}}}});
|
|
||||||
|
|
||||||
std::time_t t = std::time(0);
|
|
||||||
|
|
||||||
json res =
|
|
||||||
json{{"choices", choices},
|
|
||||||
{"created", t},
|
|
||||||
{"model",
|
|
||||||
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
||||||
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
|
||||||
{"usage",
|
|
||||||
json{{"completion_tokens", num_tokens_predicted},
|
|
||||||
{"prompt_tokens", num_prompt_tokens},
|
|
||||||
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
|
|
||||||
{"id", gen_chatcmplid()}};
|
|
||||||
|
|
||||||
if (server_verbose) {
|
|
||||||
res["__verbose"] = result;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (result.contains("completion_probabilities")) {
|
|
||||||
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
|
||||||
}
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
// return value is vector as there is one case where we might need to generate two responses
|
|
||||||
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
|
|
||||||
json result = response.result_json;
|
|
||||||
|
|
||||||
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
|
||||||
return std::vector<json>({response.result_json});
|
|
||||||
}
|
|
||||||
|
|
||||||
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
|
||||||
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
||||||
|
|
||||||
bool stopped_word = json_value(result, "stopped_word", false);
|
|
||||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
||||||
bool stopped_limit = json_value(result, "stopped_limit", false);
|
|
||||||
std::string content = json_value(result, "content", std::string(""));
|
|
||||||
|
|
||||||
std::string finish_reason;
|
|
||||||
if (stopped_word || stopped_eos) {
|
|
||||||
finish_reason = "stop";
|
|
||||||
}
|
|
||||||
if (stopped_limit) {
|
|
||||||
finish_reason = "length";
|
|
||||||
}
|
|
||||||
|
|
||||||
std::time_t t = std::time(0);
|
|
||||||
|
|
||||||
json choices;
|
|
||||||
|
|
||||||
if (!finish_reason.empty()) {
|
|
||||||
choices = json::array({json{{"finish_reason", finish_reason},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta", json::object()}}});
|
|
||||||
} else {
|
|
||||||
if (first) {
|
|
||||||
if (content.empty()) {
|
|
||||||
choices = json::array({json{{"finish_reason", nullptr},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta", json{{"role", "assistant"}}}}});
|
|
||||||
} else {
|
|
||||||
// We have to send this as two updates to conform to openai behavior
|
|
||||||
json initial_ret = json{{"choices", json::array({json{
|
|
||||||
{"finish_reason", nullptr},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta", json{
|
|
||||||
{"role", "assistant"}
|
|
||||||
}}}})},
|
|
||||||
{"created", t},
|
|
||||||
{"id", gen_chatcmplid()},
|
|
||||||
{"model", modelname},
|
|
||||||
{"object", "chat.completion.chunk"}};
|
|
||||||
|
|
||||||
json second_ret = json{
|
|
||||||
{"choices", json::array({json{{"finish_reason", nullptr},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta", json{
|
|
||||||
{"content", content}}}
|
|
||||||
}})},
|
|
||||||
{"created", t},
|
|
||||||
{"id", gen_chatcmplid()},
|
|
||||||
{"model", modelname},
|
|
||||||
{"object", "chat.completion.chunk"}};
|
|
||||||
|
|
||||||
return std::vector<json>({initial_ret, second_ret});
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// Some idiosyncrasy in task processing logic makes several trailing calls
|
|
||||||
// with empty content, we ignore these at the calee site.
|
|
||||||
if (content.empty()) {
|
|
||||||
return std::vector<json>({json::object()});
|
|
||||||
}
|
|
||||||
|
|
||||||
choices = json::array({json{
|
|
||||||
{"finish_reason", nullptr},
|
|
||||||
{"index", 0},
|
|
||||||
{"delta",
|
|
||||||
json{
|
|
||||||
{"content", content},
|
|
||||||
}},
|
|
||||||
}});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
json ret = json{{"choices", choices},
|
|
||||||
{"created", t},
|
|
||||||
{"id", gen_chatcmplid()},
|
|
||||||
{"model", modelname},
|
|
||||||
{"object", "chat.completion.chunk"}};
|
|
||||||
|
|
||||||
return std::vector<json>({ret});
|
|
||||||
}
|
|
||||||
|
|
||||||
static json format_partial_response(
|
static json format_partial_response(
|
||||||
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
||||||
) {
|
) {
|
||||||
|
|
|
@ -154,6 +154,35 @@ static inline void server_log(const char *level, const char *function, int line,
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// server utils
|
||||||
|
//
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static T json_value(const json &body, const std::string &key, const T &default_value)
|
||||||
|
{
|
||||||
|
// Fallback null to default value
|
||||||
|
return body.contains(key) && !body.at(key).is_null()
|
||||||
|
? body.value(key, default_value)
|
||||||
|
: default_value;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline std::string format_chatml(std::vector<json> messages)
|
||||||
|
{
|
||||||
|
std::ostringstream chatml_msgs;
|
||||||
|
|
||||||
|
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
||||||
|
chatml_msgs << "<|im_start|>"
|
||||||
|
<< json_value(*it, "role", std::string("user")) << '\n';
|
||||||
|
chatml_msgs << json_value(*it, "content", std::string(""))
|
||||||
|
<< "<|im_end|>\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
chatml_msgs << "<|im_start|>assistant" << '\n';
|
||||||
|
|
||||||
|
return chatml_msgs.str();
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// work queue utils
|
// work queue utils
|
||||||
//
|
//
|
||||||
|
@ -168,6 +197,7 @@ struct llama_server_queue {
|
||||||
std::function<void(T)> callback_new_task;
|
std::function<void(T)> callback_new_task;
|
||||||
std::function<void(void)> callback_all_task_finished;
|
std::function<void(void)> callback_all_task_finished;
|
||||||
|
|
||||||
|
// Add a new task to the end of the queue
|
||||||
int post(T task) {
|
int post(T task) {
|
||||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||||
task.id = id++;
|
task.id = id++;
|
||||||
|
@ -176,24 +206,29 @@ struct llama_server_queue {
|
||||||
return task.id;
|
return task.id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Add a new task, but defer until the next loop
|
||||||
void defer(T task) {
|
void defer(T task) {
|
||||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||||
queue_tasks_deferred.push_back(std::move(task));
|
queue_tasks_deferred.push_back(std::move(task));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Get the next task id
|
||||||
int get_next_id() {
|
int get_next_id() {
|
||||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||||
return id++;
|
return id++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Register function to process a new task
|
||||||
void on_new_task(std::function<void(T)> callback) {
|
void on_new_task(std::function<void(T)> callback) {
|
||||||
callback_new_task = callback;
|
callback_new_task = callback;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Register the function to be called when the batch of tasks is finished
|
||||||
void on_all_tasks_finished(std::function<void(void)> callback) {
|
void on_all_tasks_finished(std::function<void(void)> callback) {
|
||||||
callback_all_task_finished = callback;
|
callback_all_task_finished = callback;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Start the main loop. This call is blocking
|
||||||
void start_loop() {
|
void start_loop() {
|
||||||
while (true) {
|
while (true) {
|
||||||
// new task arrived
|
// new task arrived
|
||||||
|
@ -215,13 +250,8 @@ struct llama_server_queue {
|
||||||
// move deferred tasks back to main loop
|
// move deferred tasks back to main loop
|
||||||
{
|
{
|
||||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||||
//queue_tasks.insert(
|
|
||||||
// queue_tasks.end(),
|
|
||||||
// std::make_move_iterator(queue_tasks_deferred.begin()),
|
|
||||||
// std::make_move_iterator(queue_tasks_deferred.end())
|
|
||||||
//);
|
|
||||||
for (auto & task : queue_tasks_deferred) {
|
for (auto & task : queue_tasks_deferred) {
|
||||||
queue_tasks.push_back(task);
|
queue_tasks.push_back(std::move(task));
|
||||||
}
|
}
|
||||||
queue_tasks_deferred.clear();
|
queue_tasks_deferred.clear();
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
|
@ -245,12 +275,14 @@ struct llama_server_queue {
|
||||||
|
|
||||||
struct llama_server_response_event {
|
struct llama_server_response_event {
|
||||||
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
|
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
|
||||||
std::vector<task_result> queue_results;
|
callback_multitask_t callback_update_multitask;
|
||||||
|
// for keeping track of all tasks waiting for the result
|
||||||
std::mutex mutex_task_ids;
|
std::mutex mutex_task_ids;
|
||||||
std::set<int> waiting_task_ids;
|
std::set<int> waiting_task_ids;
|
||||||
|
// the main result queue
|
||||||
|
std::vector<task_result> queue_results;
|
||||||
std::mutex mutex_results;
|
std::mutex mutex_results;
|
||||||
std::condition_variable condition_results;
|
std::condition_variable condition_results;
|
||||||
callback_multitask_t callback_update_multitask;
|
|
||||||
|
|
||||||
void add_waiting_task_id(int task_id) {
|
void add_waiting_task_id(int task_id) {
|
||||||
std::unique_lock<std::mutex> lock(mutex_task_ids);
|
std::unique_lock<std::mutex> lock(mutex_task_ids);
|
||||||
|
@ -262,6 +294,7 @@ struct llama_server_response_event {
|
||||||
waiting_task_ids.erase(task_id);
|
waiting_task_ids.erase(task_id);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// This function blocks the thread until there is a response for this task_id
|
||||||
task_result recv(int task_id) {
|
task_result recv(int task_id) {
|
||||||
while (true)
|
while (true)
|
||||||
{
|
{
|
||||||
|
@ -286,16 +319,18 @@ struct llama_server_response_event {
|
||||||
// should never reach here
|
// should never reach here
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Register the function to update multitask
|
||||||
void on_multitask_update(callback_multitask_t callback) {
|
void on_multitask_update(callback_multitask_t callback) {
|
||||||
callback_update_multitask = callback;
|
callback_update_multitask = callback;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Send a new result to a waiting task_id
|
||||||
void send(task_result result) {
|
void send(task_result result) {
|
||||||
std::unique_lock<std::mutex> lock(mutex_results);
|
std::unique_lock<std::mutex> lock(mutex_results);
|
||||||
std::unique_lock<std::mutex> lock1(mutex_task_ids);
|
std::unique_lock<std::mutex> lock1(mutex_task_ids);
|
||||||
LOG_VERBOSE("send new result", {});
|
LOG_VERBOSE("send new result", {});
|
||||||
for (auto& task_id : waiting_task_ids) {
|
for (auto& task_id : waiting_task_ids) {
|
||||||
LOG_TEE("waiting task id %i \n", task_id);
|
// LOG_TEE("waiting task id %i \n", task_id);
|
||||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||||
if (result.multitask_id == task_id)
|
if (result.multitask_id == task_id)
|
||||||
{
|
{
|
||||||
|
@ -388,3 +423,30 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// random string / id
|
||||||
|
//
|
||||||
|
|
||||||
|
static std::string random_string()
|
||||||
|
{
|
||||||
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
||||||
|
|
||||||
|
std::random_device rd;
|
||||||
|
std::mt19937 generator(rd());
|
||||||
|
|
||||||
|
std::string result(32, ' ');
|
||||||
|
|
||||||
|
for (int i = 0; i < 32; ++i) {
|
||||||
|
result[i] = str[generator() % str.size()];
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string gen_chatcmplid()
|
||||||
|
{
|
||||||
|
std::stringstream chatcmplid;
|
||||||
|
chatcmplid << "chatcmpl-" << random_string();
|
||||||
|
return chatcmplid.str();
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue