refactor minicpm-v support
This commit is contained in:
parent
0959cc18ee
commit
90eefc2ba4
5 changed files with 186 additions and 136 deletions
|
@ -1008,6 +1008,29 @@ class Model:
|
|||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||||
|
||||
|
||||
# TODO: maybe merge this with Model in the future
|
||||
class VisionModelHelper:
|
||||
model: Model
|
||||
tok_embd_tensor: Tensor | None = None
|
||||
|
||||
def __init__(self, model: Model):
|
||||
self.model = model
|
||||
# TODO: how to do this without reading the whole safetensor file?
|
||||
for tname, tensor in model.get_tensors():
|
||||
if tname.endswith("embed_tokens.weight"):
|
||||
self.tok_embd_tensor = tensor
|
||||
|
||||
def get_embd_for_tokens(self, map_token_to_tensor_name: Iterable[tuple[str, gguf.MODEL_TENSOR]], tensor_name_postfix = '.weight') -> Iterable[tuple[str, Tensor]]:
|
||||
if self.tok_embd_tensor is None:
|
||||
raise ValueError("Token embedding tensor not found")
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.model.dir_model, trust_remote_code=True)
|
||||
for token, tensor_name in map_token_to_tensor_name:
|
||||
tok_id = tokenizer.get_vocab()[token]
|
||||
row = self.tok_embd_tensor[tok_id]
|
||||
yield gguf.TENSOR_NAMES[tensor_name] + tensor_name_postfix, row
|
||||
|
||||
|
||||
@Model.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||||
|
@ -2355,11 +2378,11 @@ class Qwen2VLModel(Model):
|
|||
|
||||
@Model.register("MiniCPMV")
|
||||
class MiniCPMVModel(Qwen2Model):
|
||||
# based on minicpmv-surgery.py, not sure why it is Qwen2Model instead of MiniCPMModel
|
||||
# MiniCPM-V 2.5 is Qwen2 and 2.6 is Qwen-2.5
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||
proj_type: gguf.constants.CLIPProjectorType | None
|
||||
resampler_n_embd = 0
|
||||
tok_embd_tensor: Tensor | None = None
|
||||
vhelper: VisionModelHelper | None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
@ -2378,56 +2401,49 @@ class MiniCPMVModel(Qwen2Model):
|
|||
self.proj_type = gguf.constants.CLIPProjectorType.MINICPMV_2_6
|
||||
else:
|
||||
raise ValueError(f"Unsupported MiniCPM-V version: {version}")
|
||||
self.vhelper = VisionModelHelper(self)
|
||||
# TODO: how to do this without reading the whole safetensor file?
|
||||
for tname, tensor in self.get_tensors():
|
||||
if tname == "resampler.ln_post.bias":
|
||||
self.resampler_n_embd = tensor.shape[0]
|
||||
if tname.endswith("embed_tokens.weight"):
|
||||
self.tok_embd_tensor = tensor
|
||||
if self.resampler_n_embd < 2:
|
||||
raise ValueError("Failed to detect resampler embedding size")
|
||||
else:
|
||||
raise ValueError("Expected vision_config, but not found")
|
||||
|
||||
if self.vparams is not None and self.vision_arch is not None and self.preprocessor_config is not None:
|
||||
self.preprocessor_config["image_mean"] = [0.5, 0.5, 0.5]
|
||||
self.preprocessor_config["image_std"] = [0.5, 0.5, 0.5]
|
||||
self.hparams["vision_feature_layer"] = 0
|
||||
self.v_tensor_map = gguf.get_tensor_name_map(self.vision_arch, self.vparams["num_hidden_layers"])
|
||||
|
||||
def get_embd_of_tokens(self, map_token_to_tensor_name: Iterable[tuple[str, str]]) -> Iterable[tuple[str, Tensor]]:
|
||||
if self.tok_embd_tensor is None:
|
||||
raise ValueError("Token embedding tensor not found")
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
for token, tensor_name in map_token_to_tensor_name:
|
||||
tok_id = tokenizer.get_vocab()[token]
|
||||
row = self.tok_embd_tensor[tok_id]
|
||||
yield tensor_name, row
|
||||
assert self.vparams is not None
|
||||
assert self.vision_arch is not None
|
||||
assert self.preprocessor_config is not None
|
||||
self.preprocessor_config["image_mean"] = [0.5, 0.5, 0.5]
|
||||
self.preprocessor_config["image_std"] = [0.5, 0.5, 0.5]
|
||||
self.hparams["vision_feature_layer"] = 0
|
||||
self.v_tensor_map = gguf.get_tensor_name_map(self.vision_arch, self.vparams["num_hidden_layers"])
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
# For vision model
|
||||
if self.vparams is not None and self.proj_type is not None:
|
||||
self.gguf_writer.add_vision_vit_patch_merge_type(gguf.CLIPPatchMergeType.FLAT)
|
||||
self.gguf_writer.add_vision_vit_projector_type(self.proj_type)
|
||||
self.gguf_writer.add_vision_vit_layer_norm_epsilon(1e-06)
|
||||
max_pos_embd = (self.vparams["image_size"] // self.vparams["patch_size"])**2
|
||||
self.gguf_writer.add_vision_vit_max_position_embeddings(max_pos_embd)
|
||||
assert self.vparams is not None and self.proj_type is not None
|
||||
self.gguf_writer.add_vision_vit_patch_merge_type(gguf.CLIPPatchMergeType.FLAT)
|
||||
self.gguf_writer.add_vision_vit_projector_type(self.proj_type)
|
||||
self.gguf_writer.add_vision_vit_layer_norm_epsilon(1e-06)
|
||||
max_pos_embd = (self.vparams["image_size"] // self.vparams["patch_size"])**2
|
||||
self.gguf_writer.add_vision_vit_max_position_embeddings(max_pos_embd)
|
||||
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# because the model operates excusively on 70x70 patches for now, we should precompute the positional embeddings to gain performance
|
||||
# in the future, we can do it in cpp if we figure out how to do it efficiently
|
||||
yield (
|
||||
self.format_tensor_name(gguf.MODEL_TENSOR.V_RESMPL_POS_EMBD_K, is_vision=True),
|
||||
torch.from_numpy(self._get_2d_sincos_pos_embed(self.resampler_n_embd, (70, 70)))
|
||||
)
|
||||
assert self.vhelper is not None
|
||||
added_tokens = [
|
||||
("<image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMAGE ] + ".weight"),
|
||||
("</image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_IMAGE] + ".weight"),
|
||||
("<slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_SLICE ] + ".weight"),
|
||||
("</slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_SLICE] + ".weight"),
|
||||
("<image>", gguf.MODEL_TENSOR.V_TOK_EMBD_IMAGE),
|
||||
("</image>", gguf.MODEL_TENSOR.V_TOK_EMBD_END_IMAGE),
|
||||
("<slice>", gguf.MODEL_TENSOR.V_TOK_EMBD_SLICE),
|
||||
("</slice>", gguf.MODEL_TENSOR.V_TOK_EMBD_END_SLICE),
|
||||
]
|
||||
for tensor_name, tensor in self.get_embd_of_tokens(added_tokens):
|
||||
for tensor_name, tensor in self.vhelper.get_embd_for_tokens(added_tokens):
|
||||
yield tensor_name, tensor
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue