Merge branch 'master' into add-stablelm-hash
This commit is contained in:
commit
9269594919
23 changed files with 1511 additions and 404 deletions
|
@ -227,20 +227,20 @@ effectiveStdenv.mkDerivation (
|
|||
)
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
|
||||
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
|
||||
|
||||
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
|
||||
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
|
||||
# and select the line that matches the current nixpkgs version of rocBLAS.
|
||||
# Should likely use `rocmPackages.clr.gpuTargets`.
|
||||
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
|
|
58
.github/workflows/build.yml
vendored
58
.github/workflows/build.yml
vendored
|
@ -392,6 +392,33 @@ jobs:
|
|||
cmake -DLLAMA_VULKAN=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
container: rocm/dev-ubuntu-22.04:6.0.2
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||
|
||||
- name: Build with native CMake HIP support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
|
@ -989,6 +1016,37 @@ jobs:
|
|||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
id: verify
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build --config Release
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
|
|
|
@ -555,16 +555,37 @@ if (LLAMA_VULKAN)
|
|||
endif()
|
||||
|
||||
if (LLAMA_HIPBLAS)
|
||||
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
||||
if ($ENV{ROCM_PATH})
|
||||
set(ROCM_PATH $ENV{ROCM_PATH})
|
||||
else()
|
||||
set(ROCM_PATH /opt/rocm)
|
||||
endif()
|
||||
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
|
||||
|
||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||
# CMake on Windows doesn't support the HIP language yet
|
||||
if(WIN32)
|
||||
set(CXX_IS_HIPCC TRUE)
|
||||
else()
|
||||
string(REGEX MATCH "hipcc(\.bat)?$" CXX_IS_HIPCC "${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
if(CXX_IS_HIPCC)
|
||||
if(LINUX)
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
message(WARNING "Setting hipcc as the C++ compiler is legacy behavior."
|
||||
" Prefer setting the HIP compiler directly. See README for details.")
|
||||
endif()
|
||||
else()
|
||||
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
|
||||
if(AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
|
||||
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_ARGETS})
|
||||
endif()
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
enable_language(HIP)
|
||||
endif()
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
|
@ -598,13 +619,18 @@ if (LLAMA_HIPBLAS)
|
|||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device)
|
||||
else()
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||
endif()
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SYCL)
|
||||
|
|
6
Makefile
6
Makefile
|
@ -560,10 +560,10 @@ endif # LLAMA_VULKAN
|
|||
ifdef LLAMA_HIPBLAS
|
||||
ifeq ($(wildcard /opt/rocm),)
|
||||
ROCM_PATH ?= /usr
|
||||
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
else
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
endif
|
||||
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
|
@ -575,7 +575,7 @@ ifdef LLAMA_HIP_UMA
|
|||
endif # LLAMA_HIP_UMA
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
|
|
25
README.md
25
README.md
|
@ -528,13 +528,28 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
```
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
|
||||
cmake -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
Note that if you get the following error:
|
||||
```
|
||||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||
```
|
||||
Try searching for a directory under `HIP_PATH` that contains the file
|
||||
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
||||
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
||||
like:
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
|
||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||
```bash
|
||||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||
|
@ -543,10 +558,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release ..
|
||||
cmake --build .
|
||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||
|
|
|
@ -2553,7 +2553,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
|
|||
size_t pos_start = 0;
|
||||
size_t pos_found = 0;
|
||||
|
||||
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
|
||||
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
|
||||
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
|
||||
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
|
||||
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
|
||||
|
|
|
@ -20,12 +20,13 @@
|
|||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
# TODO: automate the update of convert-hf-to-gguf.py
|
||||
#
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import sys
|
||||
from enum import IntEnum, auto
|
||||
from hashlib import sha256
|
||||
|
@ -35,6 +36,7 @@ from transformers import AutoTokenizer
|
|||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert-hf-to-gguf-update")
|
||||
sess = requests.Session()
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
|
@ -85,76 +87,44 @@ models = [
|
|||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
]
|
||||
|
||||
# make directory "models/tokenizers" if it doesn't exist
|
||||
if not os.path.exists("models/tokenizers"):
|
||||
os.makedirs("models/tokenizers")
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
response = requests.get(url, headers=headers)
|
||||
if response.status_code == 200:
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
else:
|
||||
logger.info(f"Failed to download file. Status code: {response.status_code}")
|
||||
response = sess.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
|
||||
|
||||
# download the tokenizer models
|
||||
for model in models:
|
||||
# set mapping
|
||||
def download_model(model):
|
||||
name = model["name"]
|
||||
repo = model["repo"]
|
||||
tokt = model["tokt"]
|
||||
|
||||
# NOTE: We should always be using resolve to download files
|
||||
url_resolve = f"{repo}/resolve/main"
|
||||
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
|
||||
|
||||
# set dir paths
|
||||
model_name_or_path = f"models/tokenizers/{name}"
|
||||
model_tokenizer_path = f"{model_name_or_path}/tokenizer.json"
|
||||
|
||||
# check dir path
|
||||
if os.path.exists(model_name_or_path): # Still TOCTOU?
|
||||
logger.info(f"Directory {model_name_or_path} already exists - skipping")
|
||||
continue
|
||||
|
||||
os.makedirs(model_name_or_path, exist_ok=True)
|
||||
|
||||
logger.info(f"Downloading {name} to {model_name_or_path}")
|
||||
|
||||
# model and repo urls are not the same
|
||||
download_file_with_auth(
|
||||
url=f"{url_resolve}/tokenizer.json",
|
||||
token=token,
|
||||
save_path=model_tokenizer_path
|
||||
)
|
||||
|
||||
# Get the models hyper params
|
||||
download_file_with_auth(
|
||||
url=f"{url_resolve}/config.json",
|
||||
token=token,
|
||||
save_path=f"{model_name_or_path}/config.json"
|
||||
)
|
||||
|
||||
# Handle sentencepiece tokenizer
|
||||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
download_file_with_auth(
|
||||
url=f"{url_resolve}/tokenizer.model",
|
||||
token=token,
|
||||
save_path=f"{model_name_or_path}/tokenizer.model"
|
||||
)
|
||||
files.append("tokenizer.model")
|
||||
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
|
||||
|
||||
for model in models:
|
||||
try:
|
||||
download_model(model)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to download model {model['name']}. Error: {e}")
|
||||
|
||||
# Get the tokenizer config
|
||||
download_file_with_auth(
|
||||
url=f"{url_resolve}/tokenizer_config.json",
|
||||
token=token,
|
||||
save_path=f"{model_name_or_path}/tokenizer_config.json"
|
||||
)
|
||||
|
||||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
|
||||
# TODO: auto-update convert-hf-to-gguf.py with the generated function
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
|
@ -186,7 +156,7 @@ for model in models:
|
|||
logger.info(f"chkhsh: {chkhsh}")
|
||||
|
||||
# print the "pre_tokenizer" content from the tokenizer.json
|
||||
with open(model_tokenizer_path, "r", encoding="utf-8") as f:
|
||||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
normalizer = cfg["normalizer"]
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
|
@ -243,11 +213,18 @@ src_func = f"""
|
|||
return res
|
||||
"""
|
||||
|
||||
print(src_func) # noqa: NP100
|
||||
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
|
||||
convert_py = convert_py_pth.read_text()
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
convert_py,
|
||||
flags=re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
|
||||
logger.info("\n")
|
||||
logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
||||
logger.info("\n")
|
||||
convert_py_pth.write_text(convert_py)
|
||||
|
||||
logger.info("+++ convert-hf-to-gguf.py was updated")
|
||||
|
||||
# generate tests for each tokenizer model
|
||||
|
||||
|
|
|
@ -412,6 +412,7 @@ class Model:
|
|||
# NOTE: this function is generated by convert-hf-to-gguf-update.py
|
||||
# do not modify it manually!
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
# Marker: Start get_vocab_base_pre
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||
# is specific for the BPE pre-tokenizer used by the model
|
||||
|
@ -511,6 +512,7 @@ class Model:
|
|||
logger.debug(f"chkhsh: {chkhsh}")
|
||||
|
||||
return res
|
||||
# Marker: End get_vocab_base_pre
|
||||
|
||||
def _set_vocab_gpt2(self) -> None:
|
||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||
|
@ -548,7 +550,7 @@ class Model:
|
|||
|
||||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||||
added_vocab = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Debugging Tests Tips
|
||||
|
||||
## How to run & debug a specific test without anything else to keep the feedback loop short?
|
||||
## How to run & execute or debug a specific test without anything else to keep the feedback loop short?
|
||||
|
||||
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
|
||||
|
||||
|
@ -10,13 +10,27 @@ For example, running the following command will output an interactive list from
|
|||
|
||||
It will then build & run in the debugger for you.
|
||||
|
||||
To just execute a test and get back a PASS or FAIL message run:
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh test-tokenizer
|
||||
```
|
||||
|
||||
To test in GDB use the `-g` flag to enable gdb test mode.
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh -g test-tokenizer
|
||||
|
||||
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
|
||||
>>> b main
|
||||
```
|
||||
|
||||
To speed up the testing loop, if you know your test number you can just run it similar to below:
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh test 23
|
||||
```
|
||||
|
||||
For further reference use `debug-test.sh -h` to print help.
|
||||
|
||||
|
||||
|
@ -41,7 +55,7 @@ cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON ..
|
|||
make -j
|
||||
```
|
||||
|
||||
#### Step 3.1: Identify Test Command for Debugging
|
||||
#### Step 3: Find all tests available that matches REGEX
|
||||
|
||||
The output of this command will give you the command & arguments needed to run GDB.
|
||||
|
||||
|
@ -69,11 +83,13 @@ Labels: main
|
|||
...
|
||||
```
|
||||
|
||||
So for test #1 we can tell these two pieces of relevant information:
|
||||
#### Step 4: Identify Test Command for Debugging
|
||||
|
||||
So for test #1 above we can tell these two pieces of relevant information:
|
||||
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
|
||||
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
|
||||
|
||||
#### Step 3.2: Run GDB on test command
|
||||
#### Step 5: Run GDB on test command
|
||||
|
||||
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
|
||||
|
||||
|
|
|
@ -56,6 +56,10 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
|
|||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
|
|
@ -2387,6 +2387,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
|||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --rpc SERVERS comma separated list of RPC servers\n");
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
|
@ -2439,6 +2440,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|||
break;
|
||||
}
|
||||
sparams.port = std::stoi(argv[i]);
|
||||
} else if (arg == "--rpc") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rpc_servers = argv[i];
|
||||
} else if (arg == "--host") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
|
395
ggml-cuda/fattn-tile-f16.cu
Normal file
395
ggml-cuda/fattn-tile-f16.cu
Normal file
|
@ -0,0 +1,395 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
|
||||
|
||||
half kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ half2 Q_h2[ncols][D/2];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
half kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
|
||||
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
|
||||
half2 Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
|
||||
const half2 val = h2exp(diff);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
|
||||
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
|
||||
half2 V_k[(D/2)/WARP_SIZE][2];
|
||||
half2 KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
|
||||
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||
const int i0 = i00 + 2*threadIdx.x;
|
||||
|
||||
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= __half2half2(kqsum_j);
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val);
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
3
ggml-cuda/fattn-tile-f16.cuh
Normal file
3
ggml-cuda/fattn-tile-f16.cuh
Normal file
|
@ -0,0 +1,3 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
393
ggml-cuda/fattn-tile-f32.cu
Normal file
393
ggml-cuda/fattn-tile-f32.cu
Normal file
|
@ -0,0 +1,393 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||||
|
||||
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||||
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||||
|
||||
float kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols/nwarps] = {0.0f};
|
||||
|
||||
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ float Q_f[ncols][D];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
|
||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||||
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||||
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||||
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||||
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||||
float Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
float kqsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||||
const float val = expf(diff);
|
||||
kqsum_add += val;
|
||||
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||||
}
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||||
float2 V_k[(D/2)/WARP_SIZE];
|
||||
float KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||
const int i0 = i00 + 2*threadIdx.x;
|
||||
|
||||
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val.x /= kqsum_j;
|
||||
dst_val.y /= kqsum_j;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
3
ggml-cuda/fattn-tile-f32.cuh
Normal file
3
ggml-cuda/fattn-tile-f32.cuh
Normal file
|
@ -0,0 +1,3 @@
|
|||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
|
@ -57,7 +57,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
@ -232,11 +232,8 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid != 0) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
||||
}
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
|
|
|
@ -56,7 +56,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
@ -221,11 +221,8 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && tid != 0) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
||||
}
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
@ -88,7 +90,7 @@ static __global__ void flash_attn_ext_f16(
|
|||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = blockIdx.y;
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
@ -541,13 +543,31 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
|
||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||
if (cc >= CC_OFFSET_AMD) {
|
||||
if (precision == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fast_fp16_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -1986,7 +1986,7 @@ static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restri
|
|||
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
|
||||
const float * qw = quant_weights + QK_K * i + 16*j;
|
||||
for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
|
||||
} else {
|
||||
for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
|
||||
|
|
13
ggml-rpc.cpp
13
ggml-rpc.cpp
|
@ -134,7 +134,13 @@ static bool set_no_delay(sockfd_t sockfd) {
|
|||
int flag = 1;
|
||||
// set TCP_NODELAY to disable Nagle's algorithm
|
||||
int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
|
||||
return ret >= 0;
|
||||
return ret == 0;
|
||||
}
|
||||
|
||||
static bool set_reuse_addr(sockfd_t sockfd) {
|
||||
int flag = 1;
|
||||
int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
|
||||
return ret == 0;
|
||||
}
|
||||
|
||||
static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
|
||||
|
@ -181,7 +187,10 @@ static std::shared_ptr<socket_t> create_server_socket(const char * host, int por
|
|||
if (sock == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (!set_reuse_addr(sockfd)) {
|
||||
fprintf(stderr, "Failed to set SO_REUSEADDR\n");
|
||||
return nullptr;
|
||||
}
|
||||
struct sockaddr_in serv_addr;
|
||||
serv_addr.sin_family = AF_INET;
|
||||
serv_addr.sin_addr.s_addr = inet_addr(host);
|
||||
|
|
476
ggml.c
476
ggml.c
|
@ -165,9 +165,6 @@ void ggml_print_backtrace(void) {
|
|||
#define GGML_DEBUG 0
|
||||
#define GGML_GELU_FP16
|
||||
#define GGML_GELU_QUICK_FP16
|
||||
#define GGML_SILU_FP16
|
||||
// #define GGML_CROSS_ENTROPY_EXP_FP16
|
||||
// #define GGML_FLASH_ATTN_EXP_FP16
|
||||
|
||||
#define GGML_SOFT_MAX_UNROLL 4
|
||||
#define GGML_VEC_DOT_UNROLL 2
|
||||
|
@ -318,12 +315,6 @@ static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
|||
// precomputed quick gelu table for f16 (128 KB)
|
||||
static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||||
|
||||
// precomputed silu table for f16 (128 KB)
|
||||
static ggml_fp16_t ggml_table_silu_f16[1 << 16];
|
||||
|
||||
// precomputed exp table for f16 (128 KB)
|
||||
static ggml_fp16_t ggml_table_exp_f16[1 << 16];
|
||||
|
||||
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
|
||||
float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
|
@ -2085,52 +2076,291 @@ inline static float ggml_silu_f32(float x) {
|
|||
return x/(1.0f + expf(-x));
|
||||
}
|
||||
|
||||
//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
// const uint16_t * i16 = (const uint16_t *) x;
|
||||
// for (int i = 0; i < n; ++i) {
|
||||
// y[i] = ggml_table_silu_f16[i16[i]];
|
||||
// }
|
||||
//}
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
#ifdef GGML_SILU_FP16
|
||||
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
|
||||
}
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static float32x4_t ggml_v_expf(float32x4_t x) {
|
||||
const float32x4_t r = vdupq_n_f32(0x1.8p23f);
|
||||
const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
|
||||
const float32x4_t n = vsubq_f32(z, r);
|
||||
const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
|
||||
vdupq_n_f32(0x1.7f7d1cp-20f));
|
||||
const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
|
||||
const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
|
||||
const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
|
||||
const float32x4_t u = vmulq_f32(b, b);
|
||||
const float32x4_t j = vfmaq_f32(
|
||||
vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
|
||||
vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
|
||||
vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
|
||||
if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
|
||||
return vfmaq_f32(k, j, k);
|
||||
const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
|
||||
const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
|
||||
const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
|
||||
return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
|
||||
vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static float32x4_t ggml_v_silu(float32x4_t x) {
|
||||
const float32x4_t one = vdupq_n_f32(1.0f);
|
||||
const float32x4_t zero = vdupq_n_f32(0.0f);
|
||||
const float32x4_t neg_x = vsubq_f32(zero, x);
|
||||
const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
|
||||
const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
|
||||
return vdivq_f32(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m512 ggml_v_expf(__m512 x) {
|
||||
const __m512 r = _mm512_set1_ps(0x1.8p23f);
|
||||
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
|
||||
const __m512 n = _mm512_sub_ps(z, r);
|
||||
const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
|
||||
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
|
||||
const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
|
||||
const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
|
||||
const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
|
||||
const __m512 u = _mm512_mul_ps(b, b);
|
||||
const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
|
||||
_mm512_set1_ps(0x1.573e2ep-5f)), u,
|
||||
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
|
||||
_mm512_set1_ps(0x1.fffdb6p-2f))),
|
||||
u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
|
||||
if (_mm512_kortestz(c, c))
|
||||
return _mm512_fmadd_ps(j, k, k);
|
||||
const __m512i g = _mm512_and_si512(
|
||||
_mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
|
||||
_mm512_set1_epi32(0x82000000u));
|
||||
const __m512 s1 =
|
||||
_mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
|
||||
const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
|
||||
const __mmask16 d =
|
||||
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
|
||||
return _mm512_mask_blend_ps(
|
||||
d, _mm512_mask_blend_ps(
|
||||
c, _mm512_fmadd_ps(k, j, k),
|
||||
_mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
|
||||
_mm512_mul_ps(s1, s1));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m512 ggml_v_silu(__m512 x) {
|
||||
const __m512 one = _mm512_set1_ps(1);
|
||||
const __m512 zero = _mm512_setzero_ps();
|
||||
const __m512 neg_x = _mm512_sub_ps(zero, x);
|
||||
const __m512 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
|
||||
return _mm512_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m256 ggml_v_expf(__m256 x) {
|
||||
const __m256 r = _mm256_set1_ps(0x1.8p23f);
|
||||
const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
|
||||
const __m256 n = _mm256_sub_ps(z, r);
|
||||
const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
|
||||
_mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
|
||||
const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
|
||||
const __m256 k = _mm256_castsi256_ps(
|
||||
_mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
|
||||
const __m256i c = _mm256_castps_si256(
|
||||
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||||
_mm256_set1_ps(126), _CMP_GT_OQ));
|
||||
const __m256 u = _mm256_mul_ps(b, b);
|
||||
const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
|
||||
_mm256_set1_ps(0x1.573e2ep-5f)), u,
|
||||
_mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
|
||||
_mm256_set1_ps(0x1.fffdb6p-2f))),
|
||||
u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
|
||||
if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
|
||||
return _mm256_fmadd_ps(j, k, k);
|
||||
const __m256i g = _mm256_and_si256(
|
||||
_mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
|
||||
_mm256_set1_epi32(0x82000000u));
|
||||
const __m256 s1 =
|
||||
_mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
|
||||
const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
|
||||
const __m256i d = _mm256_castps_si256(
|
||||
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||||
_mm256_set1_ps(192), _CMP_GT_OQ));
|
||||
return _mm256_or_ps(
|
||||
_mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
|
||||
_mm256_andnot_ps(
|
||||
_mm256_castsi256_ps(d),
|
||||
_mm256_or_ps(
|
||||
_mm256_and_ps(_mm256_castsi256_ps(c),
|
||||
_mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
|
||||
_mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m256 ggml_v_silu(__m256 x) {
|
||||
const __m256 one = _mm256_set1_ps(1);
|
||||
const __m256 zero = _mm256_setzero_ps();
|
||||
const __m256 neg_x = _mm256_sub_ps(zero, x);
|
||||
const __m256 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
|
||||
return _mm256_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
|
||||
|
||||
#if defined(__FMA__)
|
||||
#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
|
||||
#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
|
||||
#else
|
||||
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
|
||||
#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
|
||||
#endif
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m128 ggml_v_expf(__m128 x) {
|
||||
const __m128 r = _mm_set1_ps(0x1.8p23f);
|
||||
const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
|
||||
const __m128 n = _mm_sub_ps(z, r);
|
||||
const __m128 b =
|
||||
NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
|
||||
const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
|
||||
const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
|
||||
const __m128i c =
|
||||
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
|
||||
const __m128 u = _mm_mul_ps(b, b);
|
||||
const __m128 j =
|
||||
MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
|
||||
MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
|
||||
u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
|
||||
if (!_mm_movemask_epi8(c))
|
||||
return MADD128(j, k, k);
|
||||
const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
|
||||
_mm_set1_epi32(0x82000000u));
|
||||
const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
|
||||
const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
|
||||
const __m128i d =
|
||||
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
|
||||
return _mm_or_ps(
|
||||
_mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
|
||||
_mm_andnot_ps(_mm_castsi128_ps(d),
|
||||
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
|
||||
_mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m128 ggml_v_silu(__m128 x) {
|
||||
const __m128 one = _mm_set1_ps(1);
|
||||
const __m128 zero = _mm_setzero_ps();
|
||||
const __m128 neg_x = _mm_sub_ps(zero, x);
|
||||
const __m128 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
|
||||
return _mm_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#endif // __ARM_NEON / __AVX2__ / __SSE2__
|
||||
|
||||
static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
int i = 0;
|
||||
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
_mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
_mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__SSE2__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = ggml_silu_f32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||||
int i = 0;
|
||||
ggml_float sum = 0;
|
||||
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
__m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
|
||||
_mm512_set1_ps(max)));
|
||||
_mm512_storeu_ps(y + i, val);
|
||||
sum += (ggml_float)_mm512_reduce_add_ps(val);
|
||||
}
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
|
||||
_mm256_set1_ps(max)));
|
||||
_mm256_storeu_ps(y + i, val);
|
||||
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
|
||||
_mm256_castps256_ps128(val));
|
||||
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
|
||||
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
|
||||
sum += (ggml_float)_mm_cvtss_f32(val2);
|
||||
}
|
||||
#elif defined(__SSE2__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
__m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
|
||||
_mm_set1_ps(max)));
|
||||
_mm_storeu_ps(y + i, val);
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
|
||||
val = _mm_add_ss(val, _mm_movehdup_ps(val));
|
||||
#else
|
||||
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
|
||||
val = _mm_add_ps(val, tmp);
|
||||
tmp = _mm_movehl_ps(tmp, val);
|
||||
val = _mm_add_ss(val, tmp);
|
||||
#endif
|
||||
sum += (ggml_float)_mm_cvtss_f32(val);
|
||||
}
|
||||
#elif defined(__ARM_NEON)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
|
||||
vdupq_n_f32(max)));
|
||||
vst1q_f32(y + i, val);
|
||||
sum += (ggml_float)vaddvq_f32(val);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
float val = expf(x[i] - max);
|
||||
sum += (ggml_float)val;
|
||||
y[i] = val;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
inline static float ggml_silu_backward_f32(float x, float dy) {
|
||||
const float s = 1.0f/(1.0f + expf(-x));
|
||||
return dy*s*(1.0f + x*(1.0f - s));
|
||||
}
|
||||
|
||||
#ifdef GGML_SILU_FP16
|
||||
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
// we did not use x[i] to compute forward silu but its f16 equivalent
|
||||
// take derivative at f16 of x[i]:
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
float usedx = GGML_FP16_TO_FP32(fp16);
|
||||
dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
|
||||
#ifndef GGML_USE_ACCELERATE
|
||||
|
@ -2922,8 +3152,6 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||
float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
|
||||
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
|
||||
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
|
||||
ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
|
||||
}
|
||||
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
@ -13600,22 +13828,7 @@ static void ggml_compute_forward_soft_max_f32(
|
|||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, wp);
|
||||
|
||||
ggml_float sum = 0.0;
|
||||
|
||||
uint16_t scvt;
|
||||
for (int i = 0; i < nc; i++) {
|
||||
if (wp[i] == -INFINITY) {
|
||||
dp[i] = 0.0f;
|
||||
} else {
|
||||
// const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
|
||||
memcpy(&scvt, &s, sizeof(scvt));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
|
||||
sum += (ggml_float)val;
|
||||
dp[i] = val;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
|
||||
assert(sum > 0.0);
|
||||
|
||||
sum = 1.0/sum;
|
||||
|
@ -15374,37 +15587,7 @@ static void ggml_compute_forward_flash_attn_f32(
|
|||
vvexpf(S, S, &Mup);
|
||||
ggml_vec_sum_f32(Mup, &sum, S);
|
||||
#else
|
||||
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
|
||||
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
||||
|
||||
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
||||
if (i >= masked_begin) {
|
||||
break;
|
||||
}
|
||||
float * SS = S + i;
|
||||
|
||||
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
||||
if (i + j >= masked_begin) {
|
||||
break;
|
||||
} else if (SS[j] == -INFINITY) {
|
||||
SS[j] = 0.0f;
|
||||
} else {
|
||||
#ifndef GGML_FLASH_ATTN_EXP_FP16
|
||||
const float val = expf(SS[j] - max);
|
||||
#else
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
|
||||
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
|
||||
#endif
|
||||
sump[j] += (ggml_float)val;
|
||||
SS[j] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
||||
sum += sump[i];
|
||||
}
|
||||
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -15586,28 +15769,7 @@ static void ggml_compute_forward_flash_attn_f16(
|
|||
vvexpf(S, S, &Mup);
|
||||
ggml_vec_sum_f32(Mup, &sum, S);
|
||||
#else
|
||||
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
|
||||
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
||||
|
||||
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
||||
float * SS = S + i;
|
||||
|
||||
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
||||
if (SS[j] == -INFINITY) {
|
||||
SS[j] = 0.0f;
|
||||
} else {
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
|
||||
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
|
||||
sump[j] += (ggml_float)val;
|
||||
SS[j] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
||||
sum += sump[i];
|
||||
}
|
||||
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -16234,38 +16396,7 @@ static void ggml_compute_forward_flash_attn_back_f32(
|
|||
vvexpf(SM, SM, &Mup);
|
||||
ggml_vec_sum_f32(Mup, &sum, SM);
|
||||
#else
|
||||
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
|
||||
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
||||
|
||||
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
||||
if (i >= masked_begin) {
|
||||
break;
|
||||
}
|
||||
float * SR = S + i;
|
||||
float * SW = SM + i;
|
||||
|
||||
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
||||
if (i + j >= masked_begin) {
|
||||
break;
|
||||
} else if (SR[j] == -INFINITY) {
|
||||
SW[j] = 0.0f;
|
||||
} else {
|
||||
#ifndef GGML_FLASH_ATTN_EXP_FP16
|
||||
const float val = expf(SR[j] - max);
|
||||
#else
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
|
||||
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
|
||||
#endif
|
||||
sump[j] += (ggml_float)val;
|
||||
SW[j] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
||||
sum += sump[i];
|
||||
}
|
||||
sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -17291,35 +17422,15 @@ static void ggml_compute_forward_cross_entropy_loss_f32(
|
|||
assert(!isnan(s1[i]));
|
||||
}
|
||||
#endif
|
||||
|
||||
// soft_max
|
||||
ggml_float sum = 0.0;
|
||||
{
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
|
||||
uint16_t scvt; UNUSED(scvt);
|
||||
for (int i = 0; i < nc; i++) {
|
||||
if (s0[i] == -INFINITY) {
|
||||
st[i] = 0.0f;
|
||||
} else {
|
||||
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
|
||||
const float s = s0[i] - max;
|
||||
const float val = expf(s);
|
||||
#else
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
|
||||
memcpy(&scvt, &s, sizeof(scvt));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
|
||||
#endif
|
||||
sum += (ggml_float)val;
|
||||
st[i] = val;
|
||||
}
|
||||
}
|
||||
|
||||
assert(sum > 0.0);
|
||||
// sum = 1.0/sum;
|
||||
}
|
||||
// avoid log(0) by rescaling from [0..1] to [eps..1]
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
|
||||
assert(sum > 0.0);
|
||||
sum = (1.0 - eps) / sum;
|
||||
|
||||
// avoid log(0) by rescaling from [0..1] to [eps..1]
|
||||
ggml_vec_scale_f32(nc, st, sum);
|
||||
ggml_vec_add1_f32(nc, st, st, eps);
|
||||
ggml_vec_log_f32(nc, st, st);
|
||||
|
@ -17409,32 +17520,11 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
|||
#endif
|
||||
|
||||
// soft_max
|
||||
ggml_float sum = 0.0;
|
||||
{
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
|
||||
uint16_t scvt; UNUSED(scvt);
|
||||
for (int i = 0; i < nc; i++) {
|
||||
if (s0[i] == -INFINITY) {
|
||||
ds0[i] = 0.0f;
|
||||
} else {
|
||||
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
|
||||
const float s = s0[i] - max;
|
||||
const float val = expf(s);
|
||||
#else
|
||||
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
|
||||
memcpy(&scvt, &s, sizeof(scvt));
|
||||
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
|
||||
#endif
|
||||
sum += (ggml_float)val;
|
||||
ds0[i] = val;
|
||||
}
|
||||
}
|
||||
|
||||
assert(sum > 0.0);
|
||||
sum = (1.0 - eps)/sum;
|
||||
}
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
||||
assert(sum > 0.0);
|
||||
sum = (1.0 - eps) / sum;
|
||||
|
||||
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
|
||||
ggml_vec_scale_f32(nc, ds0, sum);
|
||||
|
|
31
llama.cpp
31
llama.cpp
|
@ -6625,6 +6625,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
||||
cb(q, "q", il);
|
||||
|
@ -6647,8 +6648,8 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
struct ggml_tensor * v =
|
||||
ggml_view_3d(ctx, kv.v_l[il],
|
||||
n_embd_head_v, n_kv, n_head_kv,
|
||||
ggml_row_size(kv.v_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv.v_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
|
||||
ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
|
||||
0);
|
||||
cb(v, "v", il);
|
||||
|
||||
|
@ -6658,7 +6659,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||
}
|
||||
|
||||
cur = ggml_reshape_2d(ctx, cur, n_embd_head_k*n_head, n_tokens);
|
||||
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
|
||||
} else {
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
cb(kq, "kq", il);
|
||||
|
@ -6703,7 +6704,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
||||
cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
|
||||
cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||||
cb(cur, "kqv_merged_cont", il);
|
||||
}
|
||||
|
||||
|
@ -12827,6 +12828,13 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
}
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
LLAMA_LOG_WARN(
|
||||
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
"Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_eos == 1) {
|
||||
GGML_ASSERT(vocab.special_eos_id != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
|
@ -12853,6 +12861,13 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
}
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
LLAMA_LOG_WARN(
|
||||
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
"Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_eos == 1) {
|
||||
GGML_ASSERT(vocab.special_add_eos != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
|
@ -13913,9 +13928,7 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_
|
|||
|
||||
// Sample the next word X using top-k sampling
|
||||
llama_sample_top_k(nullptr, candidates, int(k), 1);
|
||||
if (ctx) {
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
llama_token X = llama_sample_token(ctx, candidates);
|
||||
t_start_sample_us = ggml_time_us();
|
||||
|
||||
|
@ -13929,9 +13942,7 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_
|
|||
// Update mu using the learning rate and error
|
||||
*mu = *mu - eta * e;
|
||||
|
||||
if (ctx) {
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
return X;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,117 +1,203 @@
|
|||
#!/bin/bash
|
||||
test_suite=${1:-}
|
||||
test_number=${2:-}
|
||||
|
||||
PROG=${0##*/}
|
||||
build_dir="build-ci-debug"
|
||||
|
||||
if [ x"$1" = x"-h" ] || [ x"$1" = x"--help" ]; then
|
||||
echo "Usage: $PROG [OPTION]... <test_regex> (test_number)"
|
||||
echo "Debug specific ctest program."
|
||||
echo
|
||||
echo "Options:"
|
||||
echo " -h, --help Display this help and exit"
|
||||
echo
|
||||
echo "Arguments:"
|
||||
echo " <test_regex> (Mandatory) Supply one regex to the script to filter tests"
|
||||
echo " (test_number) (Optional) Test number to run a specific test"
|
||||
echo
|
||||
echo "Example:"
|
||||
echo " $PROG test-tokenizer"
|
||||
echo " $PROG test-tokenizer 3"
|
||||
echo
|
||||
exit 0
|
||||
fi
|
||||
# Print Color Commands
|
||||
red=$(tput setaf 1)
|
||||
green=$(tput setaf 2)
|
||||
yellow=$(tput setaf 3)
|
||||
blue=$(tput setaf 4)
|
||||
magenta=$(tput setaf 5)
|
||||
cyan=$(tput setaf 6)
|
||||
normal=$(tput sgr0)
|
||||
|
||||
# Function to select and debug a test
|
||||
function select_test() {
|
||||
test_suite=${1:-test}
|
||||
test_number=${2:-}
|
||||
|
||||
# Sanity Check If Tests Is Detected
|
||||
printf "\n\nGathering tests that fit REGEX: ${test_suite} ...\n"
|
||||
tests=($(ctest -R ${test_suite} -V -N | grep -E " +Test +#[0-9]+*" | cut -d':' -f2 | awk '{$1=$1};1'))
|
||||
if [ ${#tests[@]} -eq 0 ]
|
||||
then
|
||||
echo "No tests avaliable... check your compliation process..."
|
||||
echo "Exiting."
|
||||
exit 1
|
||||
fi
|
||||
# Print Help Message
|
||||
####################
|
||||
|
||||
if [ -z $test_number ]
|
||||
then
|
||||
# List out avaliable tests
|
||||
printf "Which test would you like to debug?\n"
|
||||
id=0
|
||||
for s in "${tests[@]}"
|
||||
do
|
||||
echo "Test# ${id}"
|
||||
echo " $s"
|
||||
((id++))
|
||||
done
|
||||
print_full_help() {
|
||||
cat << EOF
|
||||
Usage: $PROG [OPTION]... <test_regex> (test_number)
|
||||
Debug specific ctest program.
|
||||
|
||||
# Prompt user which test they wanted to run
|
||||
printf "\nRun test#? "
|
||||
read test_number
|
||||
else
|
||||
printf "\nUser Already Requested #${test_number}"
|
||||
fi
|
||||
Options:
|
||||
-h, --help display this help and exit
|
||||
-g run in gdb mode
|
||||
|
||||
# Start GDB with the requested test binary and arguments
|
||||
printf "Debugging(GDB) test: ${tests[test_number]}\n"
|
||||
# Change IFS (Internal Field Separator)
|
||||
sIFS=$IFS
|
||||
IFS=$'\n'
|
||||
Arguments:
|
||||
<test_regex> (Mandatory) Supply one regex to the script to filter tests
|
||||
(test_number) (Optional) Test number to run a specific test
|
||||
|
||||
# Get test args
|
||||
gdb_args=($(ctest -R ${test_suite} -V -N | grep "Test command" | cut -d':' -f3 | awk '{$1=$1};1' ))
|
||||
IFS=$sIFS
|
||||
printf "Debug arguments: ${gdb_args[test_number]}\n\n"
|
||||
|
||||
# Expand paths if needed
|
||||
args=()
|
||||
for x in $(echo ${gdb_args[test_number]} | sed -e 's/"\/\<//' -e 's/\>"//')
|
||||
do
|
||||
args+=($(echo $x | sed -e 's/.*\/..\//..\//'))
|
||||
done
|
||||
|
||||
# Execute debugger
|
||||
echo "gdb args: ${args[@]}"
|
||||
gdb --args ${args[@]}
|
||||
Example:
|
||||
$PROG test-tokenizer
|
||||
$PROG test-tokenizer 3
|
||||
EOF
|
||||
}
|
||||
|
||||
abort() {
|
||||
echo "Error: $1" >&2
|
||||
cat << EOF >&2
|
||||
Usage: $PROG [OPTION]... <test_regex> (test_number)
|
||||
Debug specific ctest program.
|
||||
Refer to --help for full instructions.
|
||||
EOF
|
||||
exit 1
|
||||
}
|
||||
|
||||
|
||||
# Dependency Sanity Check
|
||||
#########################
|
||||
|
||||
check_dependency() {
|
||||
command -v "$1" >/dev/null 2>&1 || {
|
||||
abort "$1 is required but not found. Please install it and try again."
|
||||
}
|
||||
}
|
||||
|
||||
check_dependency ctest
|
||||
check_dependency cmake
|
||||
|
||||
|
||||
# Step 0: Check the args
|
||||
if [ -z "$test_suite" ]
|
||||
then
|
||||
echo "Usage: $PROG [OPTION]... <test_regex> (test_number)"
|
||||
echo "Supply one regex to the script to filter tests,"
|
||||
echo "and optionally a test number to run a specific test."
|
||||
echo "Use --help flag for full instructions"
|
||||
exit 1
|
||||
########################
|
||||
|
||||
if [ x"$1" = x"-h" ] || [ x"$1" = x"--help" ]; then
|
||||
print_full_help >&2
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Parse command-line options
|
||||
gdb_mode=false
|
||||
while getopts "g" opt; do
|
||||
case $opt in
|
||||
g)
|
||||
gdb_mode=true
|
||||
echo "gdb_mode Mode Enabled"
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Shift the option parameters
|
||||
shift $((OPTIND - 1))
|
||||
|
||||
# Positionial Argument Processing : <test_regex>
|
||||
if [ -z "${1}" ]; then
|
||||
abort "Test regex is required"
|
||||
else
|
||||
test_suite=${1:-}
|
||||
fi
|
||||
|
||||
# Positionial Argument Processing : (test_number)
|
||||
test_number=${2:-}
|
||||
|
||||
|
||||
# Step 1: Reset and Setup folder context
|
||||
########################################
|
||||
|
||||
## Sanity check that we are actually in a git repo
|
||||
repo_root=$(git rev-parse --show-toplevel)
|
||||
if [ ! -d "$repo_root" ]; then
|
||||
echo "Error: Not in a Git repository."
|
||||
exit 1
|
||||
abort "Not in a Git repository."
|
||||
fi
|
||||
|
||||
## Reset folder to root context of git repo
|
||||
pushd "$repo_root" || exit 1
|
||||
## Reset folder to root context of git repo and Create and enter build directory
|
||||
pushd "$repo_root"
|
||||
rm -rf "$build_dir" && mkdir "$build_dir" || abort "Failed to make $build_dir"
|
||||
|
||||
## Create and enter build directory
|
||||
rm -rf "$build_dir" && mkdir "$build_dir" || exit 1
|
||||
|
||||
# Step 2: Setup Build Environment and Compile Test Binaries
|
||||
cmake -B "./$build_dir" -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON || exit 1
|
||||
pushd "$build_dir" && make -j || exit 1
|
||||
###########################################################
|
||||
|
||||
# Step 3: Debug the Test
|
||||
select_test "$test_suite" "$test_number"
|
||||
# Note: test-eval-callback requires -DLLAMA_CURL
|
||||
cmake -B "./$build_dir" -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_CURL=1 || abort "Failed to build enviroment"
|
||||
pushd "$build_dir"
|
||||
make -j || abort "Failed to compile"
|
||||
popd > /dev/null || exit 1
|
||||
|
||||
# Step 4: Return to the directory from which the user ran the command.
|
||||
popd || exit 1
|
||||
popd || exit 1
|
||||
popd || exit 1
|
||||
|
||||
# Step 3: Find all tests available that matches REGEX
|
||||
####################################################
|
||||
|
||||
# Ctest Gather Tests
|
||||
# `-R test-tokenizer` : looks for all the test files named `test-tokenizer*` (R=Regex)
|
||||
# `-N` : "show-only" disables test execution & shows test commands that you can feed to GDB.
|
||||
# `-V` : Verbose Mode
|
||||
printf "\n\nGathering tests that fit REGEX: ${test_suite} ...\n"
|
||||
pushd "$build_dir"
|
||||
tests=($(ctest -R ${test_suite} -V -N | grep -E " +Test +#[0-9]+*" | cut -d':' -f2 | awk '{$1=$1};1'))
|
||||
if [ ${#tests[@]} -eq 0 ]; then
|
||||
abort "No tests avaliable... check your compliation process..."
|
||||
fi
|
||||
popd > /dev/null || exit 1
|
||||
|
||||
|
||||
# Step 4: Identify Test Command for Debugging
|
||||
#############################################
|
||||
|
||||
# Select test number
|
||||
if [ -z $test_number ]; then
|
||||
# List out avaliable tests
|
||||
printf "Which test would you like to debug?\n"
|
||||
id=0
|
||||
for s in "${tests[@]}"
|
||||
do
|
||||
echo "Test# ${id}"
|
||||
echo " $s"
|
||||
((id++))
|
||||
done
|
||||
|
||||
# Prompt user which test they wanted to run
|
||||
printf "\nRun test#? "
|
||||
read test_number
|
||||
|
||||
else
|
||||
printf "\nUser Already Requested #${test_number}\n"
|
||||
|
||||
fi
|
||||
|
||||
# Grab all tests commands
|
||||
pushd "$build_dir"
|
||||
sIFS=$IFS # Save Initial IFS (Internal Field Separator)
|
||||
IFS=$'\n' # Change IFS (Internal Field Separator) (So we split ctest output by newline rather than by spaces)
|
||||
test_args=($(ctest -R ${test_suite} -V -N | grep "Test command" | cut -d':' -f3 | awk '{$1=$1};1' )) # Get test args
|
||||
IFS=$sIFS # Reset IFS (Internal Field Separator)
|
||||
popd > /dev/null || exit 1
|
||||
|
||||
# Grab specific test command
|
||||
single_test_name="${tests[test_number]}"
|
||||
single_test_command="${test_args[test_number]}"
|
||||
|
||||
|
||||
# Step 5: Execute or GDB Debug
|
||||
##############################
|
||||
|
||||
printf "${magenta}Running Test #${test_number}: ${single_test_name}${normal}\n"
|
||||
printf "${cyan}single_test_command: ${single_test_command}${normal}\n"
|
||||
|
||||
if [ "$gdb_mode" = "true" ]; then
|
||||
# Execute debugger
|
||||
pushd "$repo_root" || exit 1
|
||||
eval "gdb --args ${single_test_command}"
|
||||
popd > /dev/null || exit 1
|
||||
|
||||
else
|
||||
# Execute Test
|
||||
pushd "$repo_root" || exit 1
|
||||
eval "${single_test_command}"
|
||||
exit_code=$?
|
||||
popd > /dev/null || exit 1
|
||||
|
||||
# Print Result
|
||||
printf "${blue}Ran Test #${test_number}: ${single_test_name}${normal}\n"
|
||||
printf "${yellow}Command: ${single_test_command}${normal}\n"
|
||||
if [ $exit_code -eq 0 ]; then
|
||||
printf "${green}TEST PASS${normal}\n"
|
||||
else
|
||||
printf "${red}TEST FAIL${normal}\n"
|
||||
fi
|
||||
|
||||
fi
|
||||
|
||||
# Return to the directory from which the user ran the command.
|
||||
popd > /dev/null || exit 1
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue