clang-format the llama.* files
This commit is contained in:
parent
bcc0eb4591
commit
92887c4684
2 changed files with 10010 additions and 9127 deletions
509
llama.h
509
llama.h
|
@ -8,10 +8,10 @@
|
||||||
#else
|
#else
|
||||||
#define LLAMA_MAX_DEVICES 1
|
#define LLAMA_MAX_DEVICES 1
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
#include <stdbool.h>
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdbool.h>
|
|
||||||
|
|
||||||
#ifdef LLAMA_SHARED
|
#ifdef LLAMA_SHARED
|
||||||
#if defined(_WIN32) && !defined(__MINGW32__)
|
#if defined(_WIN32) && !defined(__MINGW32__)
|
||||||
|
@ -44,8 +44,10 @@
|
||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
#define LLAMA_SESSION_VERSION 3
|
#define LLAMA_SESSION_VERSION 3
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || \
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
defined(GGML_USE_METAL)
|
||||||
|
// Defined when llama.cpp is compiled with support for offloading model layers
|
||||||
|
// to GPU.
|
||||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -87,7 +89,8 @@ extern "C" {
|
||||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
|
||||||
|
4, // tok_embeddings.weight and output.weight are F16
|
||||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||||||
|
@ -133,7 +136,8 @@ extern "C" {
|
||||||
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||||||
//
|
//
|
||||||
// - token : the token ids of the input (used when embd is NULL)
|
// - token : the token ids of the input (used when embd is NULL)
|
||||||
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
// - embd : token embeddings (i.e. float vector of size n_embd) (used when
|
||||||
|
// token is NULL)
|
||||||
// - pos : the positions of the respective token in the sequence
|
// - pos : the positions of the respective token in the sequence
|
||||||
// - seq_id : the sequence to which the respective token belongs
|
// - seq_id : the sequence to which the respective token belongs
|
||||||
// - logits : if zero, the logits for the respective token will not be output
|
// - logits : if zero, the logits for the respective token will not be output
|
||||||
|
@ -149,7 +153,8 @@ extern "C" {
|
||||||
int8_t *logits;
|
int8_t *logits;
|
||||||
|
|
||||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||||
// for future-proof code, use the above fields instead and ignore everything below
|
// for future-proof code, use the above fields instead and ignore
|
||||||
|
// everything below
|
||||||
//
|
//
|
||||||
// pos[i] = all_pos_0 + i*all_pos_1
|
// pos[i] = all_pos_0 + i*all_pos_1
|
||||||
//
|
//
|
||||||
|
@ -177,7 +182,8 @@ extern "C" {
|
||||||
struct llama_model_params {
|
struct llama_model_params {
|
||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
const float *tensor_split; // how to split layers across multiple GPUs (size:
|
||||||
|
// LLAMA_MAX_DEVICES)
|
||||||
|
|
||||||
// called with a progress value between 0 and 1, pass NULL to disable
|
// called with a progress value between 0 and 1, pass NULL to disable
|
||||||
llama_progress_callback progress_callback;
|
llama_progress_callback progress_callback;
|
||||||
|
@ -200,7 +206,8 @@ extern "C" {
|
||||||
uint32_t n_batch; // prompt processing maximum batch size
|
uint32_t n_batch; // prompt processing maximum batch size
|
||||||
uint32_t n_threads; // number of threads to use for generation
|
uint32_t n_threads; // number of threads to use for generation
|
||||||
uint32_t n_threads_batch; // number of threads to use for batch processing
|
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||||||
int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
int8_t rope_scaling_type; // RoPE scaling type, from `enum
|
||||||
|
// llama_rope_scaling_type`
|
||||||
|
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||||
|
@ -215,20 +222,26 @@ extern "C" {
|
||||||
enum ggml_type type_v; // data type for V cache
|
enum ggml_type type_v; // data type for V cache
|
||||||
|
|
||||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED -
|
||||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
// always true)
|
||||||
|
bool logits_all; // the llama_eval() call computes all logits, not just the
|
||||||
|
// last one
|
||||||
bool embedding; // embedding mode only
|
bool embedding; // embedding mode only
|
||||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
bool offload_kqv; // whether to offload the KQV ops (including the KV cache)
|
||||||
|
// to GPU
|
||||||
};
|
};
|
||||||
|
|
||||||
// model quantization parameters
|
// model quantization parameters
|
||||||
typedef struct llama_model_quantize_params {
|
typedef struct llama_model_quantize_params {
|
||||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
int nthread; // number of threads to use for quantizing, if <=0 will use
|
||||||
|
// std::thread::hardware_concurrency()
|
||||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
bool only_copy; // only copy tensors - ftype, allow_requantize and
|
||||||
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
|
// quantize_output_tensor are ignored
|
||||||
|
bool pure; // disable k-quant mixtures and quantize all tensors to the same
|
||||||
|
// type
|
||||||
} llama_model_quantize_params;
|
} llama_model_quantize_params;
|
||||||
|
|
||||||
// grammar types
|
// grammar types
|
||||||
|
@ -256,7 +269,8 @@ extern "C" {
|
||||||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||||||
|
|
||||||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||||||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab],
|
||||||
|
// [a-zA])
|
||||||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -282,7 +296,8 @@ extern "C" {
|
||||||
// Helpers for getting default parameters
|
// Helpers for getting default parameters
|
||||||
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
LLAMA_API struct llama_model_quantize_params
|
||||||
|
llama_model_quantize_default_params(void);
|
||||||
|
|
||||||
// Initialize the llama + ggml backend
|
// Initialize the llama + ggml backend
|
||||||
// If numa is true, use NUMA optimizations
|
// If numa is true, use NUMA optimizations
|
||||||
|
@ -292,14 +307,14 @@ extern "C" {
|
||||||
// Call once at the end of the program - currently only used for MPI
|
// Call once at the end of the program - currently only used for MPI
|
||||||
LLAMA_API void llama_backend_free(void);
|
LLAMA_API void llama_backend_free(void);
|
||||||
|
|
||||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
LLAMA_API struct llama_model *
|
||||||
const char * path_model,
|
llama_load_model_from_file(const char *path_model,
|
||||||
struct llama_model_params params);
|
struct llama_model_params params);
|
||||||
|
|
||||||
LLAMA_API void llama_free_model(struct llama_model *model);
|
LLAMA_API void llama_free_model(struct llama_model *model);
|
||||||
|
|
||||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
LLAMA_API struct llama_context *
|
||||||
struct llama_model * model,
|
llama_new_context_with_model(struct llama_model *model,
|
||||||
struct llama_context_params params);
|
struct llama_context_params params);
|
||||||
|
|
||||||
// Frees all allocated memory
|
// Frees all allocated memory
|
||||||
|
@ -311,11 +326,13 @@ extern "C" {
|
||||||
LLAMA_API bool llama_mmap_supported(void);
|
LLAMA_API bool llama_mmap_supported(void);
|
||||||
LLAMA_API bool llama_mlock_supported(void);
|
LLAMA_API bool llama_mlock_supported(void);
|
||||||
|
|
||||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
LLAMA_API const struct llama_model *
|
||||||
|
llama_get_model(const struct llama_context *ctx);
|
||||||
|
|
||||||
LLAMA_API int llama_n_ctx(const struct llama_context *ctx);
|
LLAMA_API int llama_n_ctx(const struct llama_context *ctx);
|
||||||
|
|
||||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
LLAMA_API enum llama_vocab_type
|
||||||
|
llama_vocab_type(const struct llama_model *model);
|
||||||
|
|
||||||
LLAMA_API int llama_n_vocab(const struct llama_model *model);
|
LLAMA_API int llama_n_vocab(const struct llama_model *model);
|
||||||
LLAMA_API int llama_n_ctx_train(const struct llama_model *model);
|
LLAMA_API int llama_n_ctx_train(const struct llama_model *model);
|
||||||
|
@ -330,19 +347,25 @@ extern "C" {
|
||||||
// - GGUF array values are not supported by these functions
|
// - GGUF array values are not supported by these functions
|
||||||
|
|
||||||
// Get metadata value as a string by key name
|
// Get metadata value as a string by key name
|
||||||
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_meta_val_str(const struct llama_model *model,
|
||||||
|
const char *key, char *buf,
|
||||||
|
size_t buf_size);
|
||||||
|
|
||||||
// Get the number of metadata key/value pairs
|
// Get the number of metadata key/value pairs
|
||||||
LLAMA_API int llama_model_meta_count(const struct llama_model *model);
|
LLAMA_API int llama_model_meta_count(const struct llama_model *model);
|
||||||
|
|
||||||
// Get metadata key name by index
|
// Get metadata key name by index
|
||||||
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model *model,
|
||||||
|
int i, char *buf, size_t buf_size);
|
||||||
|
|
||||||
// Get metadata value as a string by index
|
// Get metadata value as a string by index
|
||||||
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model *model,
|
||||||
|
int i, char *buf,
|
||||||
|
size_t buf_size);
|
||||||
|
|
||||||
// Get a string describing the model type
|
// Get a string describing the model type
|
||||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_desc(const struct llama_model *model, char *buf,
|
||||||
|
size_t buf_size);
|
||||||
|
|
||||||
// Returns the total size of all the tensors in the model in bytes
|
// Returns the total size of all the tensors in the model in bytes
|
||||||
LLAMA_API uint64_t llama_model_size(const struct llama_model *model);
|
LLAMA_API uint64_t llama_model_size(const struct llama_model *model);
|
||||||
|
@ -351,30 +374,27 @@ extern "C" {
|
||||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model *model);
|
LLAMA_API uint64_t llama_model_n_params(const struct llama_model *model);
|
||||||
|
|
||||||
// Get a llama model tensor
|
// Get a llama model tensor
|
||||||
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
LLAMA_API struct ggml_tensor *llama_get_model_tensor(struct llama_model *model,
|
||||||
|
const char *name);
|
||||||
|
|
||||||
// Returns 0 on success
|
// Returns 0 on success
|
||||||
LLAMA_API int llama_model_quantize(
|
LLAMA_API int llama_model_quantize(const char *fname_inp, const char *fname_out,
|
||||||
const char * fname_inp,
|
|
||||||
const char * fname_out,
|
|
||||||
const llama_model_quantize_params *params);
|
const llama_model_quantize_params *params);
|
||||||
|
|
||||||
// Apply a LoRA adapter to a loaded model
|
// Apply a LoRA adapter to a loaded model
|
||||||
// path_base_model is the path to a higher quality model to use as a base for
|
// path_base_model is the path to a higher quality model to use as a base for
|
||||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
// the layers modified by the adapter. Can be NULL to use the current loaded
|
||||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
// model. The model needs to be reloaded before applying a new adapter,
|
||||||
// will be applied on top of the previous one
|
// otherwise the adapter will be applied on top of the previous one Returns 0 on
|
||||||
// Returns 0 on success
|
// success
|
||||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
const char *path_lora,
|
const char *path_lora,
|
||||||
float scale,
|
float scale,
|
||||||
const char *path_base_model,
|
const char *path_base_model,
|
||||||
int n_threads),
|
int n_threads),
|
||||||
"use llama_model_apply_lora_from_file instead");
|
"use llama_model_apply_lora_from_file instead");
|
||||||
|
|
||||||
LLAMA_API int llama_model_apply_lora_from_file(
|
LLAMA_API int llama_model_apply_lora_from_file(const struct llama_model *model,
|
||||||
const struct llama_model * model,
|
|
||||||
const char *path_lora,
|
const char *path_lora,
|
||||||
float scale,
|
float scale,
|
||||||
const char *path_base_model,
|
const char *path_base_model,
|
||||||
|
@ -424,61 +444,54 @@ extern "C" {
|
||||||
};
|
};
|
||||||
|
|
||||||
// Create an empty KV cache view. (use only for debugging purposes)
|
// Create an empty KV cache view. (use only for debugging purposes)
|
||||||
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
|
LLAMA_API struct llama_kv_cache_view
|
||||||
|
llama_kv_cache_view_init(const struct llama_context *ctx, int32_t n_max_seq);
|
||||||
|
|
||||||
// Free a KV cache view. (use only for debugging purposes)
|
// Free a KV cache view. (use only for debugging purposes)
|
||||||
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view *view);
|
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view *view);
|
||||||
|
|
||||||
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
// Update the KV cache view structure with the current state of the KV cache.
|
||||||
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
// (use only for debugging purposes)
|
||||||
|
LLAMA_API void llama_kv_cache_view_update(const struct llama_context *ctx,
|
||||||
|
struct llama_kv_cache_view *view);
|
||||||
|
|
||||||
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
||||||
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
// If a KV cell has multiple sequences assigned to it, it will be counted
|
||||||
|
// multiple times
|
||||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context *ctx);
|
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context *ctx);
|
||||||
|
|
||||||
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
// Returns the number of used KV cells (i.e. have at least one sequence assigned
|
||||||
|
// to them)
|
||||||
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context *ctx);
|
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context *ctx);
|
||||||
|
|
||||||
// Clear the KV cache
|
// Clear the KV cache
|
||||||
LLAMA_API void llama_kv_cache_clear(
|
LLAMA_API void llama_kv_cache_clear(struct llama_context *ctx);
|
||||||
struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
// Removes all tokens that belong to the specified sequence and have positions
|
||||||
// seq_id < 0 : match any sequence
|
// in [p0, p1) seq_id < 0 : match any sequence p0 < 0 : [0, p1] p1 < 0 :
|
||||||
// p0 < 0 : [0, p1]
|
// [p0, inf)
|
||||||
// p1 < 0 : [p0, inf)
|
LLAMA_API void llama_kv_cache_seq_rm(struct llama_context *ctx,
|
||||||
LLAMA_API void llama_kv_cache_seq_rm(
|
llama_seq_id seq_id, llama_pos p0,
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_seq_id seq_id,
|
|
||||||
llama_pos p0,
|
|
||||||
llama_pos p1);
|
llama_pos p1);
|
||||||
|
|
||||||
// Copy all tokens that belong to the specified sequence to another sequence
|
// Copy all tokens that belong to the specified sequence to another sequence
|
||||||
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
// Note that this does not allocate extra KV cache memory - it simply assigns
|
||||||
// p0 < 0 : [0, p1]
|
// the tokens to the new sequence p0 < 0 : [0, p1] p1 < 0 : [p0, inf)
|
||||||
// p1 < 0 : [p0, inf)
|
LLAMA_API void llama_kv_cache_seq_cp(struct llama_context *ctx,
|
||||||
LLAMA_API void llama_kv_cache_seq_cp(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_seq_id seq_id_src,
|
llama_seq_id seq_id_src,
|
||||||
llama_seq_id seq_id_dst,
|
llama_seq_id seq_id_dst, llama_pos p0,
|
||||||
llama_pos p0,
|
|
||||||
llama_pos p1);
|
llama_pos p1);
|
||||||
|
|
||||||
// Removes all tokens that do not belong to the specified sequence
|
// Removes all tokens that do not belong to the specified sequence
|
||||||
LLAMA_API void llama_kv_cache_seq_keep(
|
LLAMA_API void llama_kv_cache_seq_keep(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_seq_id seq_id);
|
llama_seq_id seq_id);
|
||||||
|
|
||||||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
// Adds relative position "delta" to all tokens that belong to the specified
|
||||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
// sequence and have positions in [p0, p1) If the KV cache is RoPEd, the KV data
|
||||||
// p0 < 0 : [0, p1]
|
// is updated accordingly p0 < 0 : [0, p1] p1 < 0 : [p0, inf)
|
||||||
// p1 < 0 : [p0, inf)
|
LLAMA_API void llama_kv_cache_seq_shift(struct llama_context *ctx,
|
||||||
LLAMA_API void llama_kv_cache_seq_shift(
|
llama_seq_id seq_id, llama_pos p0,
|
||||||
struct llama_context * ctx,
|
llama_pos p1, llama_pos delta);
|
||||||
llama_seq_id seq_id,
|
|
||||||
llama_pos p0,
|
|
||||||
llama_pos p1,
|
|
||||||
llama_pos delta);
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// State / sessions
|
// State / sessions
|
||||||
|
@ -491,26 +504,20 @@ extern "C" {
|
||||||
// Copies the state to the specified destination address.
|
// Copies the state to the specified destination address.
|
||||||
// Destination needs to have allocated enough memory.
|
// Destination needs to have allocated enough memory.
|
||||||
// Returns the number of bytes copied
|
// Returns the number of bytes copied
|
||||||
LLAMA_API size_t llama_copy_state_data(
|
LLAMA_API size_t llama_copy_state_data(struct llama_context *ctx, uint8_t *dst);
|
||||||
struct llama_context * ctx,
|
|
||||||
uint8_t * dst);
|
|
||||||
|
|
||||||
// Set the state reading from the specified address
|
// Set the state reading from the specified address
|
||||||
// Returns the number of bytes read
|
// Returns the number of bytes read
|
||||||
LLAMA_API size_t llama_set_state_data(
|
LLAMA_API size_t llama_set_state_data(struct llama_context *ctx, uint8_t *src);
|
||||||
struct llama_context * ctx,
|
|
||||||
uint8_t * src);
|
|
||||||
|
|
||||||
// Save/load session file
|
// Save/load session file
|
||||||
LLAMA_API bool llama_load_session_file(
|
LLAMA_API bool llama_load_session_file(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
const char *path_session,
|
const char *path_session,
|
||||||
llama_token *tokens_out,
|
llama_token *tokens_out,
|
||||||
size_t n_token_capacity,
|
size_t n_token_capacity,
|
||||||
size_t *n_token_count_out);
|
size_t *n_token_count_out);
|
||||||
|
|
||||||
LLAMA_API bool llama_save_session_file(
|
LLAMA_API bool llama_save_session_file(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
const char *path_session,
|
const char *path_session,
|
||||||
const llama_token *tokens,
|
const llama_token *tokens,
|
||||||
size_t n_token_count);
|
size_t n_token_count);
|
||||||
|
@ -519,33 +526,28 @@ extern "C" {
|
||||||
// Decoding
|
// Decoding
|
||||||
//
|
//
|
||||||
|
|
||||||
// Run the llama inference to obtain the logits and probabilities for the next token(s).
|
// Run the llama inference to obtain the logits and probabilities for the next
|
||||||
// tokens + n_tokens is the provided batch of new tokens to process
|
// token(s). tokens + n_tokens is the provided batch of new tokens to process
|
||||||
// n_past is the number of tokens to use from previous eval calls
|
// n_past is the number of tokens to use from previous eval calls
|
||||||
// Returns 0 on success
|
// Returns 0 on success
|
||||||
// DEPRECATED: use llama_decode() instead
|
// DEPRECATED: use llama_decode() instead
|
||||||
LLAMA_API DEPRECATED(int llama_eval(
|
LLAMA_API DEPRECATED(int llama_eval(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
llama_token *tokens, int32_t n_tokens,
|
||||||
llama_token * tokens,
|
|
||||||
int32_t n_tokens,
|
|
||||||
int n_past),
|
int n_past),
|
||||||
"use llama_decode() instead");
|
"use llama_decode() instead");
|
||||||
|
|
||||||
// Same as llama_eval, but use float matrix input directly.
|
// Same as llama_eval, but use float matrix input directly.
|
||||||
// DEPRECATED: use llama_decode() instead
|
// DEPRECATED: use llama_decode() instead
|
||||||
LLAMA_API DEPRECATED(int llama_eval_embd(
|
LLAMA_API DEPRECATED(int llama_eval_embd(struct llama_context *ctx, float *embd,
|
||||||
struct llama_context * ctx,
|
int32_t n_tokens, int n_past),
|
||||||
float * embd,
|
|
||||||
int32_t n_tokens,
|
|
||||||
int n_past),
|
|
||||||
"use llama_decode() instead");
|
"use llama_decode() instead");
|
||||||
|
|
||||||
// Return batch for single sequence of tokens starting at pos_0
|
// Return batch for single sequence of tokens starting at pos_0
|
||||||
//
|
//
|
||||||
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
// NOTE: this is a helper function to facilitate transition to the new batch API
|
||||||
|
// - avoid using it
|
||||||
//
|
//
|
||||||
LLAMA_API struct llama_batch llama_batch_get_one(
|
LLAMA_API struct llama_batch llama_batch_get_one(llama_token *tokens,
|
||||||
llama_token * tokens,
|
|
||||||
int32_t n_tokens,
|
int32_t n_tokens,
|
||||||
llama_pos pos_0,
|
llama_pos pos_0,
|
||||||
llama_seq_id seq_id);
|
llama_seq_id seq_id);
|
||||||
|
@ -553,13 +555,11 @@ extern "C" {
|
||||||
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||||||
// Each token can be assigned up to n_seq_max sequence ids
|
// Each token can be assigned up to n_seq_max sequence ids
|
||||||
// The batch has to be freed with llama_batch_free()
|
// The batch has to be freed with llama_batch_free()
|
||||||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd
|
||||||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
// * sizeof(float) Otherwise, llama_batch.token will be allocated to store
|
||||||
// The rest of the llama_batch members are allocated with size n_tokens
|
// n_tokens llama_token The rest of the llama_batch members are allocated with
|
||||||
// All members are left uninitialized
|
// size n_tokens All members are left uninitialized
|
||||||
LLAMA_API struct llama_batch llama_batch_init(
|
LLAMA_API struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd,
|
||||||
int32_t n_tokens,
|
|
||||||
int32_t embd,
|
|
||||||
int32_t n_seq_max);
|
int32_t n_seq_max);
|
||||||
|
|
||||||
// Frees a batch of tokens allocated with llama_batch_init()
|
// Frees a batch of tokens allocated with llama_batch_init()
|
||||||
|
@ -567,16 +567,18 @@ extern "C" {
|
||||||
|
|
||||||
// Positive return values does not mean a fatal error, but rather a warning.
|
// Positive return values does not mean a fatal error, but rather a warning.
|
||||||
// 0 - success
|
// 0 - success
|
||||||
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
// 1 - could not find a KV slot for the batch (try reducing the size of the
|
||||||
|
// batch or increase the context)
|
||||||
// < 0 - error
|
// < 0 - error
|
||||||
LLAMA_API int llama_decode(
|
LLAMA_API int llama_decode(struct llama_context *ctx, struct llama_batch batch);
|
||||||
struct llama_context * ctx,
|
|
||||||
struct llama_batch batch);
|
|
||||||
|
|
||||||
// Set the number of threads used for decoding
|
// Set the number of threads used for decoding
|
||||||
// n_threads is the number of threads used for generation (single token)
|
// n_threads is the number of threads used for generation (single token)
|
||||||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
// n_threads_batch is the number of threads used for prompt and batch processing
|
||||||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
// (multiple tokens)
|
||||||
|
LLAMA_API void llama_set_n_threads(struct llama_context *ctx,
|
||||||
|
uint32_t n_threads,
|
||||||
|
uint32_t n_threads_batch);
|
||||||
|
|
||||||
// Token logits obtained from the last call to llama_eval()
|
// Token logits obtained from the last call to llama_eval()
|
||||||
// The logits for the last token are stored in the last row
|
// The logits for the last token are stored in the last row
|
||||||
|
@ -597,16 +599,22 @@ extern "C" {
|
||||||
// Vocab
|
// Vocab
|
||||||
//
|
//
|
||||||
|
|
||||||
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
LLAMA_API const char *llama_token_get_text(const struct llama_model *model,
|
||||||
|
llama_token token);
|
||||||
|
|
||||||
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
LLAMA_API float llama_token_get_score(const struct llama_model *model,
|
||||||
|
llama_token token);
|
||||||
|
|
||||||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
LLAMA_API enum llama_token_type
|
||||||
|
llama_token_get_type(const struct llama_model *model, llama_token token);
|
||||||
|
|
||||||
// Special tokens
|
// Special tokens
|
||||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
LLAMA_API llama_token
|
||||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
llama_token_bos(const struct llama_model *model); // beginning-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
LLAMA_API llama_token
|
||||||
|
llama_token_eos(const struct llama_model *model); // end-of-sentence
|
||||||
|
LLAMA_API llama_token
|
||||||
|
llama_token_nl(const struct llama_model *model); // next-line
|
||||||
|
|
||||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||||
LLAMA_API int llama_add_bos_token(const struct llama_model *model);
|
LLAMA_API int llama_add_bos_token(const struct llama_model *model);
|
||||||
|
@ -615,52 +623,52 @@ extern "C" {
|
||||||
LLAMA_API int llama_add_eos_token(const struct llama_model *model);
|
LLAMA_API int llama_add_eos_token(const struct llama_model *model);
|
||||||
|
|
||||||
// codellama infill tokens
|
// codellama infill tokens
|
||||||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
LLAMA_API llama_token llama_token_prefix(
|
||||||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
const struct llama_model *model); // Beginning of infill prefix
|
||||||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
LLAMA_API llama_token llama_token_middle(
|
||||||
LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
|
const struct llama_model *model); // Beginning of infill middle
|
||||||
|
LLAMA_API llama_token llama_token_suffix(
|
||||||
|
const struct llama_model *model); // Beginning of infill suffix
|
||||||
|
LLAMA_API llama_token
|
||||||
|
llama_token_eot(const struct llama_model *model); // End of infill middle
|
||||||
|
|
||||||
//
|
//
|
||||||
// Tokenization
|
// Tokenization
|
||||||
//
|
//
|
||||||
|
|
||||||
/// @details Convert the provided text into tokens.
|
/// @details Convert the provided text into tokens.
|
||||||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
/// @param tokens The tokens pointer must be large enough to hold the resulting
|
||||||
|
/// tokens.
|
||||||
/// @return Returns the number of tokens on success, no more than n_max_tokens
|
/// @return Returns the number of tokens on success, no more than n_max_tokens
|
||||||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
/// @return Returns a negative number on failure - the number of tokens that
|
||||||
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
/// would have been returned
|
||||||
|
/// @param special Allow tokenizing special and/or control tokens which
|
||||||
|
/// otherwise are not exposed and treated as plaintext.
|
||||||
/// Does not insert a leading space.
|
/// Does not insert a leading space.
|
||||||
LLAMA_API int llama_tokenize(
|
LLAMA_API int llama_tokenize(const struct llama_model *model, const char *text,
|
||||||
const struct llama_model * model,
|
int text_len, llama_token *tokens,
|
||||||
const char * text,
|
int n_max_tokens, bool add_bos, bool special);
|
||||||
int text_len,
|
|
||||||
llama_token * tokens,
|
|
||||||
int n_max_tokens,
|
|
||||||
bool add_bos,
|
|
||||||
bool special);
|
|
||||||
|
|
||||||
// Token Id -> Piece.
|
// Token Id -> Piece.
|
||||||
// Uses the vocabulary in the provided context.
|
// Uses the vocabulary in the provided context.
|
||||||
// Does not write null terminator to the buffer.
|
// Does not write null terminator to the buffer.
|
||||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
// User code is responsible to remove the leading whitespace of the first
|
||||||
LLAMA_API int llama_token_to_piece(
|
// non-BOS token when decoding multiple tokens.
|
||||||
const struct llama_model * model,
|
LLAMA_API int llama_token_to_piece(const struct llama_model *model,
|
||||||
llama_token token,
|
llama_token token, char *buf, int length);
|
||||||
char * buf,
|
|
||||||
int length);
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// Grammar
|
// Grammar
|
||||||
//
|
//
|
||||||
|
|
||||||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
LLAMA_API struct llama_grammar *
|
||||||
const llama_grammar_element ** rules,
|
llama_grammar_init(const llama_grammar_element **rules, size_t n_rules,
|
||||||
size_t n_rules,
|
|
||||||
size_t start_rule_index);
|
size_t start_rule_index);
|
||||||
|
|
||||||
LLAMA_API void llama_grammar_free(struct llama_grammar *grammar);
|
LLAMA_API void llama_grammar_free(struct llama_grammar *grammar);
|
||||||
|
|
||||||
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
LLAMA_API struct llama_grammar *
|
||||||
|
llama_grammar_copy(const struct llama_grammar *grammar);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Sampling functions
|
// Sampling functions
|
||||||
|
@ -669,124 +677,138 @@ extern "C" {
|
||||||
// Sets the current rng seed.
|
// Sets the current rng seed.
|
||||||
LLAMA_API void llama_set_rng_seed(struct llama_context *ctx, uint32_t seed);
|
LLAMA_API void llama_set_rng_seed(struct llama_context *ctx, uint32_t seed);
|
||||||
|
|
||||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
/// @details Repetition penalty described in CTRL academic paper
|
||||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
/// https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
|
/// @details Frequency and presence penalties described in OpenAI API
|
||||||
|
/// https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
LLAMA_API void llama_sample_repetition_penalties(
|
LLAMA_API void llama_sample_repetition_penalties(
|
||||||
struct llama_context * ctx,
|
struct llama_context *ctx, llama_token_data_array *candidates,
|
||||||
llama_token_data_array * candidates,
|
const llama_token *last_tokens, size_t penalty_last_n, float penalty_repeat,
|
||||||
const llama_token * last_tokens,
|
float penalty_freq, float penalty_present);
|
||||||
size_t penalty_last_n,
|
|
||||||
float penalty_repeat,
|
|
||||||
float penalty_freq,
|
|
||||||
float penalty_present);
|
|
||||||
|
|
||||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
/// @details Apply classifier-free guidance to the logits as described in
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
/// academic paper "Stay on topic with Classifier-Free Guidance"
|
||||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
/// https://arxiv.org/abs/2306.17806
|
||||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
/// @param candidates A vector of `llama_token_data` containing the candidate
|
||||||
|
/// tokens, the logits must be directly extracted from the original generation
|
||||||
|
/// context without being sorted.
|
||||||
|
/// @params guidance_ctx A separate context from the same model. Other than a
|
||||||
|
/// negative prompt at the beginning, it should have all generated and user
|
||||||
|
/// input tokens copied from the main context.
|
||||||
|
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean
|
||||||
|
/// stronger guidance.
|
||||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||||
struct llama_context * ctx,
|
struct llama_context *ctx, llama_token_data_array *candidates,
|
||||||
llama_token_data_array * candidates,
|
struct llama_context *guidance_ctx, float scale);
|
||||||
struct llama_context * guidance_ctx,
|
|
||||||
float scale);
|
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
/// @details Sorts candidate tokens by their logits in descending order and
|
||||||
LLAMA_API void llama_sample_softmax(
|
/// calculate probabilities based on logits.
|
||||||
struct llama_context * ctx,
|
LLAMA_API void llama_sample_softmax(struct llama_context *ctx,
|
||||||
llama_token_data_array *candidates);
|
llama_token_data_array *candidates);
|
||||||
|
|
||||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
/// @details Top-K sampling described in academic paper "The Curious Case of
|
||||||
LLAMA_API void llama_sample_top_k(
|
/// Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
struct llama_context * ctx,
|
LLAMA_API void llama_sample_top_k(struct llama_context *ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array *candidates, int k,
|
||||||
int k,
|
|
||||||
size_t min_keep);
|
size_t min_keep);
|
||||||
|
|
||||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
/// @details Nucleus sampling described in academic paper "The Curious Case of
|
||||||
LLAMA_API void llama_sample_top_p(
|
/// Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
struct llama_context * ctx,
|
LLAMA_API void llama_sample_top_p(struct llama_context *ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array *candidates, float p,
|
||||||
float p,
|
|
||||||
size_t min_keep);
|
size_t min_keep);
|
||||||
|
|
||||||
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
/// @details Minimum P sampling as described in
|
||||||
LLAMA_API void llama_sample_min_p(
|
/// https://github.com/ggerganov/llama.cpp/pull/3841
|
||||||
struct llama_context * ctx,
|
LLAMA_API void llama_sample_min_p(struct llama_context *ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array *candidates, float p,
|
||||||
float p,
|
|
||||||
size_t min_keep);
|
size_t min_keep);
|
||||||
|
|
||||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
/// @details Tail Free Sampling described in
|
||||||
LLAMA_API void llama_sample_tail_free(
|
/// https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||||
struct llama_context * ctx,
|
LLAMA_API void llama_sample_tail_free(struct llama_context *ctx,
|
||||||
llama_token_data_array *candidates,
|
llama_token_data_array *candidates,
|
||||||
float z,
|
float z, size_t min_keep);
|
||||||
|
|
||||||
|
/// @details Locally Typical Sampling implementation described in the paper
|
||||||
|
/// https://arxiv.org/abs/2202.00666.
|
||||||
|
LLAMA_API void llama_sample_typical(struct llama_context *ctx,
|
||||||
|
llama_token_data_array *candidates, float p,
|
||||||
size_t min_keep);
|
size_t min_keep);
|
||||||
|
|
||||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
LLAMA_API void llama_sample_temp(struct llama_context *ctx,
|
||||||
LLAMA_API void llama_sample_typical(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_token_data_array * candidates,
|
|
||||||
float p,
|
|
||||||
size_t min_keep);
|
|
||||||
|
|
||||||
LLAMA_API void llama_sample_temp(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_token_data_array *candidates,
|
llama_token_data_array *candidates,
|
||||||
float temp);
|
float temp);
|
||||||
|
|
||||||
LLAMA_API DEPRECATED(void llama_sample_temperature(
|
LLAMA_API
|
||||||
struct llama_context * ctx,
|
DEPRECATED(void llama_sample_temperature(struct llama_context *ctx,
|
||||||
llama_token_data_array *candidates,
|
llama_token_data_array *candidates,
|
||||||
float temp),
|
float temp),
|
||||||
"use llama_sample_temp instead");
|
"use llama_sample_temp instead");
|
||||||
|
|
||||||
/// @details Apply constraints from grammar
|
/// @details Apply constraints from grammar
|
||||||
LLAMA_API void llama_sample_grammar(
|
LLAMA_API void llama_sample_grammar(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_token_data_array *candidates,
|
llama_token_data_array *candidates,
|
||||||
const struct llama_grammar *grammar);
|
const struct llama_grammar *grammar);
|
||||||
|
|
||||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
/// @details Mirostat 1.0 algorithm described in the paper
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
/// https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
/// @param candidates A vector of `llama_token_data` containing the candidate
|
||||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
/// tokens, their probabilities (p), and log-odds (logit) for the current
|
||||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
/// position in the generated text.
|
||||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve
|
||||||
|
/// for the generated text. A higher value corresponds to more surprising or
|
||||||
|
/// less predictable text, while a lower value corresponds to less surprising or
|
||||||
|
/// more predictable text.
|
||||||
|
/// @param eta The learning rate used to update `mu` based on the error between
|
||||||
|
/// the target and observed surprisal of the sampled word. A larger learning
|
||||||
|
/// rate will cause `mu` to be updated more quickly, while a smaller learning
|
||||||
|
/// rate will result in slower updates.
|
||||||
|
/// @param m The number of tokens considered in the estimation of `s_hat`. This
|
||||||
|
/// is an arbitrary value that is used to calculate `s_hat`, which in turn helps
|
||||||
|
/// to calculate the value of `k`. In the paper, they use `m = 100`, but you can
|
||||||
|
/// experiment with different values to see how it affects the performance of
|
||||||
|
/// the algorithm.
|
||||||
|
/// @param mu Maximum cross-entropy. This value is initialized to be twice the
|
||||||
|
/// target cross-entropy (`2 * tau`) and is updated in the algorithm based on
|
||||||
|
/// the error between the target and observed surprisal.
|
||||||
LLAMA_API llama_token llama_sample_token_mirostat(
|
LLAMA_API llama_token llama_sample_token_mirostat(
|
||||||
struct llama_context * ctx,
|
struct llama_context *ctx, llama_token_data_array *candidates, float tau,
|
||||||
llama_token_data_array * candidates,
|
float eta, int m, float *mu);
|
||||||
float tau,
|
|
||||||
float eta,
|
|
||||||
int m,
|
|
||||||
float * mu);
|
|
||||||
|
|
||||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
/// @details Mirostat 2.0 algorithm described in the paper
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
/// https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
/// @param candidates A vector of `llama_token_data` containing the candidate
|
||||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
/// tokens, their probabilities (p), and log-odds (logit) for the current
|
||||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
/// position in the generated text.
|
||||||
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve
|
||||||
|
/// for the generated text. A higher value corresponds to more surprising or
|
||||||
|
/// less predictable text, while a lower value corresponds to less surprising or
|
||||||
|
/// more predictable text.
|
||||||
|
/// @param eta The learning rate used to update `mu` based on the error between
|
||||||
|
/// the target and observed surprisal of the sampled word. A larger learning
|
||||||
|
/// rate will cause `mu` to be updated more quickly, while a smaller learning
|
||||||
|
/// rate will result in slower updates.
|
||||||
|
/// @param mu Maximum cross-entropy. This value is initialized to be twice the
|
||||||
|
/// target cross-entropy (`2 * tau`) and is updated in the algorithm based on
|
||||||
|
/// the error between the target and observed surprisal.
|
||||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
||||||
struct llama_context * ctx,
|
struct llama_context *ctx, llama_token_data_array *candidates, float tau,
|
||||||
llama_token_data_array * candidates,
|
float eta, float *mu);
|
||||||
float tau,
|
|
||||||
float eta,
|
|
||||||
float * mu);
|
|
||||||
|
|
||||||
/// @details Selects the token with the highest probability.
|
/// @details Selects the token with the highest probability.
|
||||||
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
|
/// Does not compute the token probabilities. Use
|
||||||
|
/// llama_sample_softmax() instead.
|
||||||
LLAMA_API llama_token llama_sample_token_greedy(
|
LLAMA_API llama_token llama_sample_token_greedy(
|
||||||
struct llama_context * ctx,
|
struct llama_context *ctx, llama_token_data_array *candidates);
|
||||||
llama_token_data_array * candidates);
|
|
||||||
|
|
||||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
/// @details Randomly selects a token from the candidates based on their
|
||||||
LLAMA_API llama_token llama_sample_token(
|
/// probabilities.
|
||||||
struct llama_context * ctx,
|
LLAMA_API llama_token llama_sample_token(struct llama_context *ctx,
|
||||||
llama_token_data_array *candidates);
|
llama_token_data_array *candidates);
|
||||||
|
|
||||||
/// @details Accepts the sampled token into the grammar
|
/// @details Accepts the sampled token into the grammar
|
||||||
LLAMA_API void llama_grammar_accept_token(
|
LLAMA_API void llama_grammar_accept_token(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
struct llama_grammar *grammar,
|
struct llama_grammar *grammar,
|
||||||
llama_token token);
|
llama_token token);
|
||||||
|
|
||||||
|
@ -803,36 +825,39 @@ extern "C" {
|
||||||
};
|
};
|
||||||
|
|
||||||
// Passed to beam_search_callback function.
|
// Passed to beam_search_callback function.
|
||||||
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
|
// Whenever 0 < common_prefix_length, this number of tokens should be copied
|
||||||
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
|
// from any of the beams (e.g. beams[0]) as they will be removed (shifted) from
|
||||||
// These pointers are valid only during the synchronous callback, so should not be saved.
|
// all beams in all subsequent callbacks. These pointers are valid only during
|
||||||
|
// the synchronous callback, so should not be saved.
|
||||||
struct llama_beams_state {
|
struct llama_beams_state {
|
||||||
struct llama_beam_view *beam_views;
|
struct llama_beam_view *beam_views;
|
||||||
|
|
||||||
size_t n_beams; // Number of elements in beam_views[].
|
size_t n_beams; // Number of elements in beam_views[].
|
||||||
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
|
size_t common_prefix_length; // Current max length of prefix tokens shared by
|
||||||
|
// all beams.
|
||||||
bool last_call; // True iff this is the last callback invocation.
|
bool last_call; // True iff this is the last callback invocation.
|
||||||
};
|
};
|
||||||
|
|
||||||
// Type of pointer to the beam_search_callback function.
|
// Type of pointer to the beam_search_callback function.
|
||||||
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
|
// void* callback_data is any custom data passed to llama_beam_search, that is
|
||||||
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
|
// subsequently passed back to beam_search_callback. This avoids having to use
|
||||||
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
|
// global variables in the callback.
|
||||||
|
typedef void (*llama_beam_search_callback_fn_t)(void *callback_data,
|
||||||
|
struct llama_beams_state);
|
||||||
|
|
||||||
/// @details Deterministically returns entire sentence constructed by a beam search.
|
/// @details Deterministically returns entire sentence constructed by a beam
|
||||||
|
/// search.
|
||||||
/// @param ctx Pointer to the llama_context.
|
/// @param ctx Pointer to the llama_context.
|
||||||
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
|
/// @param callback Invoked for each iteration of the beam_search loop, passing
|
||||||
|
/// in beams_state.
|
||||||
/// @param callback_data A pointer that is simply passed back to callback.
|
/// @param callback_data A pointer that is simply passed back to callback.
|
||||||
/// @param n_beams Number of beams to use.
|
/// @param n_beams Number of beams to use.
|
||||||
/// @param n_past Number of tokens already evaluated.
|
/// @param n_past Number of tokens already evaluated.
|
||||||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||||||
LLAMA_API void llama_beam_search(
|
LLAMA_API void llama_beam_search(struct llama_context *ctx,
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_beam_search_callback_fn_t callback,
|
llama_beam_search_callback_fn_t callback,
|
||||||
void * callback_data,
|
void *callback_data, size_t n_beams,
|
||||||
size_t n_beams,
|
int n_past, int n_predict);
|
||||||
int n_past,
|
|
||||||
int n_predict);
|
|
||||||
|
|
||||||
// Performance information
|
// Performance information
|
||||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context *ctx);
|
LLAMA_API struct llama_timings llama_get_timings(struct llama_context *ctx);
|
||||||
|
@ -847,7 +872,8 @@ extern "C" {
|
||||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||||
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void *user_data);
|
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void *user_data);
|
||||||
|
|
||||||
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
LLAMA_API void llama_dump_timing_info_yaml(FILE *stream,
|
||||||
|
const struct llama_context *ctx);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
@ -856,14 +882,13 @@ extern "C" {
|
||||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||||
#ifdef LLAMA_API_INTERNAL
|
#ifdef LLAMA_API_INTERNAL
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
struct ggml_tensor;
|
struct ggml_tensor;
|
||||||
|
|
||||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
const std::vector<std::pair<std::string, struct ggml_tensor *>> &
|
||||||
struct llama_context * ctx
|
llama_internal_get_tensor_map(struct llama_context *ctx);
|
||||||
);
|
|
||||||
|
|
||||||
#endif // LLAMA_API_INTERNAL
|
#endif // LLAMA_API_INTERNAL
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue