convert : fix python 3.8 support, modernize type annotations (#2916)
* convert : fix python 3.8 support * convert : sort imports * convert : fix required parameters in convert-llama-ggmlv3-to-gguf * convert : fix mypy errors in convert-llama-ggmlv3-to-gguf * convert : use PEP 585 generics and PEP 604 unions Now that we have `from __future__ import annotations`, we can use this modern syntax in Python 3.7 instead of restricting support to Python 3.9 or 3.10 respectively. * gguf.py : a tuple is already a tuple * add mypy.ini * convert : add necessary `type: ignore` comments * gguf-py: bump version
This commit is contained in:
parent
8afe228000
commit
92d0b751a7
10 changed files with 193 additions and 168 deletions
|
@ -1,16 +1,18 @@
|
|||
#!/usr/bin/env python3
|
||||
import shutil
|
||||
import sys
|
||||
import struct
|
||||
import tempfile
|
||||
import numpy as np
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import shutil
|
||||
import struct
|
||||
import sys
|
||||
import tempfile
|
||||
from enum import IntEnum, auto
|
||||
from io import BufferedWriter
|
||||
from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union
|
||||
from pathlib import Path
|
||||
from typing import IO, Any, BinaryIO, Callable, Sequence
|
||||
|
||||
import numpy as np
|
||||
|
||||
#
|
||||
# constants
|
||||
|
@ -103,7 +105,7 @@ class MODEL_TENSOR(IntEnum):
|
|||
FFN_NORM : int = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.LLAMA: "llama",
|
||||
MODEL_ARCH.FALCON: "falcon",
|
||||
MODEL_ARCH.GPT2: "gpt2",
|
||||
|
@ -112,7 +114,7 @@ MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.MPT: "mpt",
|
||||
}
|
||||
|
||||
MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
|
||||
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
||||
MODEL_ARCH.LLAMA: {
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
|
@ -158,7 +160,7 @@ MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = {
|
|||
}
|
||||
|
||||
# tensors that will not be serialized
|
||||
MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_ARCH.LLAMA: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
|
@ -167,7 +169,7 @@ MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = {
|
|||
|
||||
|
||||
class TensorNameMap:
|
||||
mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
|
||||
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
# Token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD: (
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
|
@ -203,7 +205,7 @@ class TensorNameMap:
|
|||
),
|
||||
}
|
||||
|
||||
block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = {
|
||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
# Attention norm
|
||||
MODEL_TENSOR.ATTN_NORM: (
|
||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||
|
@ -298,9 +300,9 @@ class TensorNameMap:
|
|||
),
|
||||
}
|
||||
|
||||
mapping: Dict[str, Tuple[MODEL_TENSOR, str]]
|
||||
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||
|
||||
tensor_names: Dict[MODEL_TENSOR, str]
|
||||
tensor_names: dict[MODEL_TENSOR, str]
|
||||
|
||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||
mapping = self.mapping = {}
|
||||
|
@ -321,7 +323,7 @@ class TensorNameMap:
|
|||
key = key.format(bid = bid)
|
||||
mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]:
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODEL_TENSOR, str] | None:
|
||||
result = self.mapping.get(key)
|
||||
if result is not None:
|
||||
return result
|
||||
|
@ -332,13 +334,13 @@ class TensorNameMap:
|
|||
return (result[0], result[1] + suffix)
|
||||
return None
|
||||
|
||||
def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]:
|
||||
def get_name(self, key: str, try_suffixes: Sequence[str]) -> str | None:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
return result[1]
|
||||
|
||||
def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]:
|
||||
def get_type(self, key: str, try_suffixes: Sequence[str]) -> MODEL_TENSOR | None:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
|
@ -432,10 +434,10 @@ class GGUFWriter:
|
|||
ti_data = b""
|
||||
ti_data_count = 0
|
||||
use_temp_file: bool
|
||||
temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None
|
||||
tensors: List[Tuple[np.ndarray[Any, Any], int]]
|
||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
|
||||
tensors: list[tuple[np.ndarray[Any, Any], int]]
|
||||
|
||||
def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True):
|
||||
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True):
|
||||
self.fout = open(path, "wb")
|
||||
self.arch = arch
|
||||
self.add_architecture()
|
||||
|
@ -531,7 +533,7 @@ class GGUFWriter:
|
|||
GGUFValueType.FLOAT64: "<d",
|
||||
GGUFValueType.BOOL: "?" ,
|
||||
}
|
||||
def add_val(self, val: Any, vtype: Optional[GGUFValueType] = None, add_vtype: bool = True):
|
||||
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
|
||||
if vtype is None:
|
||||
vtype = GGUFValueType.get_type(val)
|
||||
|
||||
|
@ -561,7 +563,7 @@ class GGUFWriter:
|
|||
def ggml_pad(x: int, n: int) -> int:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None):
|
||||
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||
|
||||
encoded_name = name.encode("utf8")
|
||||
|
@ -580,7 +582,7 @@ class GGUFWriter:
|
|||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||
self.ti_data_count += 1
|
||||
|
||||
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
|
||||
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
|
||||
if self.use_temp_file and self.temp_file is None:
|
||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||
fp.seek(0)
|
||||
|
@ -600,7 +602,7 @@ class GGUFWriter:
|
|||
if pad != 0:
|
||||
self.temp_file.write(bytes([0] * pad))
|
||||
|
||||
def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None):
|
||||
def write_padding(self, fp: BinaryIO, n: int, align: int | None = None):
|
||||
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
|
||||
if pad != 0:
|
||||
fp.write(bytes([0] * pad))
|
||||
|
@ -726,13 +728,13 @@ class GGUFWriter:
|
|||
def add_tokenizer_model(self, model: str):
|
||||
self.add_string(KEY_TOKENIZER_MODEL, model)
|
||||
|
||||
def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
|
||||
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
|
||||
self.add_array(KEY_TOKENIZER_LIST, tokens)
|
||||
|
||||
def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]):
|
||||
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
|
||||
self.add_array(KEY_TOKENIZER_MERGES, merges)
|
||||
|
||||
def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]):
|
||||
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]):
|
||||
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
|
||||
|
||||
def add_token_scores(self, scores: Sequence[float]):
|
||||
|
@ -756,11 +758,11 @@ class GGUFWriter:
|
|||
|
||||
class SpecialVocab:
|
||||
load_merges: bool = False
|
||||
merges: List[str] = []
|
||||
special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad'))
|
||||
special_token_ids: Dict[str, int] = {}
|
||||
merges: list[str] = []
|
||||
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
||||
special_token_ids: dict[str, int] = {}
|
||||
|
||||
def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None):
|
||||
def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
|
||||
self.special_token_ids = {}
|
||||
self.load_merges = load_merges
|
||||
if special_token_types is not None:
|
||||
|
@ -821,7 +823,7 @@ class SpecialVocab:
|
|||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||
gw.add_token_merges(self.merges)
|
||||
for typ, tokid in self.special_token_ids.items():
|
||||
handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None)
|
||||
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
||||
if handler is None:
|
||||
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
|
||||
continue
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.2.1"
|
||||
version = "0.3.1"
|
||||
description = "Write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue