convert : renamed expert_weights_func to expert_gating_func
This commit is contained in:
parent
a43d4953ba
commit
93aca64520
3 changed files with 7 additions and 7 deletions
|
@ -3859,9 +3859,9 @@ class DeepseekV2Model(Model):
|
||||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||||
|
|
||||||
if hparams["scoring_func"] == "sigmoid":
|
if hparams["scoring_func"] == "sigmoid":
|
||||||
self.gguf_writer.add_expert_weights_func(gguf.ExpertWeightsFuncType.SIGMOID)
|
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||||
elif hparams["scoring_func"] == "softmax":
|
elif hparams["scoring_func"] == "softmax":
|
||||||
self.gguf_writer.add_expert_weights_func(gguf.ExpertWeightsFuncType.SOFTMAX)
|
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
|
raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
|
||||||
|
|
||||||
|
|
|
@ -103,7 +103,7 @@ class Keys:
|
||||||
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
||||||
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
||||||
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
|
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
|
||||||
EXPERT_WEIGHTS_FUNC = "{arch}.expert_weights_func"
|
EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
|
||||||
POOLING_TYPE = "{arch}.pooling_type"
|
POOLING_TYPE = "{arch}.pooling_type"
|
||||||
LOGIT_SCALE = "{arch}.logit_scale"
|
LOGIT_SCALE = "{arch}.logit_scale"
|
||||||
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
||||||
|
@ -1581,7 +1581,7 @@ class GGMLQuantizationType(IntEnum):
|
||||||
TQ2_0 = 35
|
TQ2_0 = 35
|
||||||
|
|
||||||
|
|
||||||
class ExpertWeightsFuncType(IntEnum):
|
class ExpertGatingFuncType(IntEnum):
|
||||||
SOFTMAX = 1
|
SOFTMAX = 1
|
||||||
SIGMOID = 2
|
SIGMOID = 2
|
||||||
|
|
||||||
|
|
|
@ -26,7 +26,7 @@ from .constants import (
|
||||||
RopeScalingType,
|
RopeScalingType,
|
||||||
PoolingType,
|
PoolingType,
|
||||||
TokenType,
|
TokenType,
|
||||||
ExpertWeightsFuncType,
|
ExpertGatingFuncType,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .quants import quant_shape_from_byte_shape
|
from .quants import quant_shape_from_byte_shape
|
||||||
|
@ -719,8 +719,8 @@ class GGUFWriter:
|
||||||
def add_expert_weights_norm(self, value: bool) -> None:
|
def add_expert_weights_norm(self, value: bool) -> None:
|
||||||
self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value)
|
self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value)
|
||||||
|
|
||||||
def add_expert_weights_func(self, value: ExpertWeightsFuncType) -> None:
|
def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
|
||||||
self.add_uint32(Keys.LLM.EXPERT_WEIGHTS_FUNC.format(arch=self.arch), value.value)
|
self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
|
||||||
|
|
||||||
def add_swin_norm(self, value: bool) -> None:
|
def add_swin_norm(self, value: bool) -> None:
|
||||||
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
|
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue