Prefer west const.
This commit is contained in:
parent
e46a8b517f
commit
93daad763d
3 changed files with 28 additions and 28 deletions
|
@ -32,7 +32,7 @@ struct ostream_beam_view {
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
llama_beam_view beam_view;
|
llama_beam_view beam_view;
|
||||||
};
|
};
|
||||||
std::ostream& operator<<(std::ostream& os, ostream_beam_view const & obv) {
|
std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
|
||||||
os << "p(" << obv.beam_view.p << ") eos(" << std::boolalpha << obv.beam_view.eos << ") tokens(";
|
os << "p(" << obv.beam_view.p << ") eos(" << std::boolalpha << obv.beam_view.eos << ") tokens(";
|
||||||
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
|
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
|
||||||
os << llama_token_to_str(obv.ctx, obv.beam_view.tokens[i]);
|
os << llama_token_to_str(obv.ctx, obv.beam_view.tokens[i]);
|
||||||
|
@ -46,7 +46,7 @@ struct beam_search_callback_data {
|
||||||
std::vector<llama_token> response;
|
std::vector<llama_token> response;
|
||||||
};
|
};
|
||||||
|
|
||||||
bool is_at_eos(beam_search_callback_data const & callback_data, llama_token const * tokens, size_t const n_tokens) {
|
bool is_at_eos(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
|
||||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
|
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -66,10 +66,10 @@ void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_stat
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
printf(","); // Show progress
|
printf(","); // Show progress
|
||||||
if (size_t const n = beams_state.common_prefix_length) {
|
if (const size_t n = beams_state.common_prefix_length) {
|
||||||
callback_data.response.resize(callback_data.response.size() + n);
|
callback_data.response.resize(callback_data.response.size() + n);
|
||||||
assert(0u < beams_state.n_beams);
|
assert(0u < beams_state.n_beams);
|
||||||
llama_token const * tokens = beams_state.beam_views[0].tokens;
|
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||||
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
||||||
printf("%lu", n);
|
printf("%lu", n);
|
||||||
}
|
}
|
||||||
|
|
|
@ -1209,7 +1209,7 @@ static void log_server_request(const Request &req, const Response &res)
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
bool is_at_eos(llama_server_context & server_context, llama_token const * tokens, size_t const n_tokens) {
|
bool is_at_eos(llama_server_context & server_context, const llama_token * tokens, const size_t n_tokens) {
|
||||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
|
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1229,11 +1229,11 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
printf(","); // Show progress
|
printf(","); // Show progress
|
||||||
if (size_t const n = beams_state.common_prefix_length) {
|
if (const size_t n = beams_state.common_prefix_length) {
|
||||||
llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
|
llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
|
||||||
assert(0u < beams_state.n_beams);
|
assert(0u < beams_state.n_beams);
|
||||||
llama_token const * tokens = beams_state.beam_views[0].tokens;
|
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||||
auto const map = [](llama_token tok) { return completion_token_output{{},tok}; };
|
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
|
||||||
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
|
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
|
||||||
printf("%lu", n);
|
printf("%lu", n);
|
||||||
}
|
}
|
||||||
|
@ -1255,12 +1255,12 @@ struct token_translator {
|
||||||
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
|
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
|
||||||
auto & gtps = llama.generated_token_probs;
|
auto & gtps = llama.generated_token_probs;
|
||||||
auto translator = token_translator{llama.ctx};
|
auto translator = token_translator{llama.ctx};
|
||||||
auto add_strlen = [=](size_t sum, completion_token_output const & cto) { return sum + translator(cto).size(); };
|
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
|
||||||
size_t const len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
|
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
|
||||||
if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
|
if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
|
||||||
llama.generated_text.reserve(llama.generated_text.size() + len);
|
llama.generated_text.reserve(llama.generated_text.size() + len);
|
||||||
}
|
}
|
||||||
for (completion_token_output const & cto : gtps) {
|
for (const completion_token_output & cto : gtps) {
|
||||||
llama.generated_text += translator(cto);
|
llama.generated_text += translator(cto);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
34
llama.cpp
34
llama.cpp
|
@ -4335,11 +4335,11 @@ struct llama_beam {
|
||||||
float p; // Cumulative beam probability (renormalized relative to all beams)
|
float p; // Cumulative beam probability (renormalized relative to all beams)
|
||||||
bool eos; // Initialize end-of-sentence to false. Callback sets this to true.
|
bool eos; // Initialize end-of-sentence to false. Callback sets this to true.
|
||||||
// Sort beams by probability. In case of ties, prefer beams at eos.
|
// Sort beams by probability. In case of ties, prefer beams at eos.
|
||||||
bool operator<(llama_beam const & rhs) const {
|
bool operator<(const llama_beam & rhs) const {
|
||||||
return std::make_tuple(p, eos) < std::make_tuple(rhs.p, rhs.eos);
|
return std::make_tuple(p, eos) < std::make_tuple(rhs.p, rhs.eos);
|
||||||
}
|
}
|
||||||
// Shift off first n tokens and discard them.
|
// Shift off first n tokens and discard them.
|
||||||
void shift_tokens(size_t const n) {
|
void shift_tokens(const size_t n) {
|
||||||
if (n) {
|
if (n) {
|
||||||
std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
|
std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
|
||||||
tokens.resize(tokens.size() - n);
|
tokens.resize(tokens.size() - n);
|
||||||
|
@ -4350,10 +4350,10 @@ struct llama_beam {
|
||||||
|
|
||||||
// A struct for calculating logit-related info.
|
// A struct for calculating logit-related info.
|
||||||
struct logit_info {
|
struct logit_info {
|
||||||
float const * const logits;
|
const float * const logits;
|
||||||
int const n_vocab;
|
const int n_vocab;
|
||||||
float const max_l;
|
const float max_l;
|
||||||
float const normalizer;
|
const float normalizer;
|
||||||
struct sum_exp {
|
struct sum_exp {
|
||||||
float max_l;
|
float max_l;
|
||||||
float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
|
float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
|
||||||
|
@ -4364,19 +4364,19 @@ struct logit_info {
|
||||||
, max_l(*std::max_element(logits, logits + n_vocab))
|
, max_l(*std::max_element(logits, logits + n_vocab))
|
||||||
, normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
|
, normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
|
||||||
{ }
|
{ }
|
||||||
llama_token_data get_token_data(llama_token const token_id) const {
|
llama_token_data get_token_data(const llama_token token_id) const {
|
||||||
constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
|
constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
|
||||||
return {token_id, logits[token_id], p};
|
return {token_id, logits[token_id], p};
|
||||||
}
|
}
|
||||||
// Return top k token_data by logit.
|
// Return top k token_data by logit.
|
||||||
std::vector<llama_token_data> top_k(size_t k) {
|
std::vector<llama_token_data> top_k(size_t k) {
|
||||||
std::vector<llama_token_data> min_heap; // min-heap by logit
|
std::vector<llama_token_data> min_heap; // min-heap by logit
|
||||||
llama_token const k_min = std::min(static_cast<llama_token>(k), n_vocab);
|
const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
|
||||||
min_heap.reserve(k_min);
|
min_heap.reserve(k_min);
|
||||||
for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
|
for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
|
||||||
min_heap.push_back(get_token_data(token_id));
|
min_heap.push_back(get_token_data(token_id));
|
||||||
}
|
}
|
||||||
auto comp = [](llama_token_data const & a, llama_token_data const & b) { return a.logit > b.logit; };
|
auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
|
||||||
std::make_heap(min_heap.begin(), min_heap.end(), comp);
|
std::make_heap(min_heap.begin(), min_heap.end(), comp);
|
||||||
for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
|
for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
|
||||||
if (min_heap.front().logit < logits[token_id]) {
|
if (min_heap.front().logit < logits[token_id]) {
|
||||||
|
@ -4420,7 +4420,7 @@ struct beam_search {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Collapse beams to a single beam given by index.
|
// Collapse beams to a single beam given by index.
|
||||||
void collapse_beams(size_t const beam_idx) {
|
void collapse_beams(const size_t beam_idx) {
|
||||||
if (0u < beam_idx) {
|
if (0u < beam_idx) {
|
||||||
std::swap(beams[0], beams[beam_idx]);
|
std::swap(beams[0], beams[beam_idx]);
|
||||||
}
|
}
|
||||||
|
@ -4434,7 +4434,7 @@ struct beam_search {
|
||||||
// least element to the back(), replace it with the new, then push it into the heap.
|
// least element to the back(), replace it with the new, then push it into the heap.
|
||||||
void fill_next_beams_by_top_probabilities(llama_beam & beam) {
|
void fill_next_beams_by_top_probabilities(llama_beam & beam) {
|
||||||
// Min-heaps use a greater-than comparator.
|
// Min-heaps use a greater-than comparator.
|
||||||
auto const comp = [](llama_beam const & a, llama_beam const & b) { return a.p > b.p; };
|
const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
|
||||||
if (beam.eos) {
|
if (beam.eos) {
|
||||||
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
|
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
|
||||||
if (next_beams.size() < n_beams) {
|
if (next_beams.size() < n_beams) {
|
||||||
|
@ -4473,7 +4473,7 @@ struct beam_search {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (; i < n_beams ; ++i) {
|
for (; i < n_beams ; ++i) {
|
||||||
float const next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
|
const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
|
||||||
if (next_beams.front().p < next_p) {
|
if (next_beams.front().p < next_p) {
|
||||||
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
|
std::pop_heap(next_beams.begin(), next_beams.end(), comp);
|
||||||
next_beams.back() = beam;
|
next_beams.back() = beam;
|
||||||
|
@ -4503,7 +4503,7 @@ struct beam_search {
|
||||||
|
|
||||||
// Construct beams_state to send back to caller via the callback function.
|
// Construct beams_state to send back to caller via the callback function.
|
||||||
// Side effect: set common_prefix_length = find_common_prefix_length();
|
// Side effect: set common_prefix_length = find_common_prefix_length();
|
||||||
llama_beams_state get_beams_state(bool const last_call) {
|
llama_beams_state get_beams_state(const bool last_call) {
|
||||||
for (size_t i = 0 ; i < beams.size() ; ++i) {
|
for (size_t i = 0 ; i < beams.size() ; ++i) {
|
||||||
beam_views[i] = beams[i].view();
|
beam_views[i] = beams[i].view();
|
||||||
}
|
}
|
||||||
|
@ -4516,9 +4516,9 @@ struct beam_search {
|
||||||
// * any of the beams have not yet reached end-of-sentence, AND
|
// * any of the beams have not yet reached end-of-sentence, AND
|
||||||
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
|
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
|
||||||
// (since all other beam probabilities can only decrease)
|
// (since all other beam probabilities can only decrease)
|
||||||
void loop(llama_beam_search_callback_fn_t const callback, void * const callback_data) {
|
void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
|
||||||
beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eos.
|
beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eos.
|
||||||
auto const not_eos = [](llama_beam const & beam) { return !beam.eos; };
|
const auto not_eos = [](const llama_beam & beam) { return !beam.eos; };
|
||||||
for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eos) &&
|
for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eos) &&
|
||||||
!beams[top_beam_index()].eos ; ++i) {
|
!beams[top_beam_index()].eos ; ++i) {
|
||||||
callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
|
callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
|
||||||
|
@ -4544,8 +4544,8 @@ struct beam_search {
|
||||||
// As beams grow, the cumulative probabilities decrease.
|
// As beams grow, the cumulative probabilities decrease.
|
||||||
// Renormalize them to avoid floating point underflow.
|
// Renormalize them to avoid floating point underflow.
|
||||||
static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
|
static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
|
||||||
auto const sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
|
const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
|
||||||
float const inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
|
const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
|
||||||
std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
|
std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue