diff --git a/examples/baby-llama/baby-llama-text.cpp b/examples/baby-llama/baby-llama-text.cpp index 4c3cd631b..cda1edece 100644 --- a/examples/baby-llama/baby-llama-text.cpp +++ b/examples/baby-llama/baby-llama-text.cpp @@ -911,6 +911,234 @@ struct ggml_tensor * forward_batch( return inpL; } +struct ggml_tensor * forward_batch_wo_cache( + struct my_llama_model * model, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_batch) { + + const int n_past = 0; + const int N = n_tokens; + + const auto & hparams = model->hparams; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_rot = hparams.n_rot; + const int n_ff = get_n_ff(&hparams); + + struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); + memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); + + // inpL shape [n_embd,N*n_batch,1] + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); + assert_shape_2d(inpL, n_embd, N*n_batch); + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + struct ggml_tensor * cur; + + // lctx.use_buf(ctx0, 0); + + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = attention_norm*cur + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].attention_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // self-attention + { + // compute Q and K and RoPE them + // wq shape [n_embd, n_embd, 1, 1] + // wk shape [n_embd, n_embd, 1, 1] + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Kcur shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0); + assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); + assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); + + // Vcur shape [N, n_batch, n_embd/n_head, n_head] + struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); + assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); + + // Qcur shape [n_embd/n_head, n_head, N, n_batch] + // Q shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); + + // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] + // K shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * K = + ggml_permute(ctx0, + Kcur, + 0, 2, 1, 3); + assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); + + // K * Q + // KQ shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + assert_shape_4d(KQ, N, N, n_head, n_batch); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + // KQ_scaled shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_scaled = + ggml_scale_inplace(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); + assert_shape_4d(KQ_scaled, N, N, n_head, n_batch); + + // KQ_masked = mask_past(KQ_scaled) + // KQ_masked shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + assert_shape_4d(KQ_masked, N, N, n_head, n_batch); + + // KQ = soft_max(KQ_masked) + // KQ_soft_max shape [N, N, n_head, n_batch] + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + assert_shape_4d(KQ_soft_max, N, N, n_head, n_batch); + + // Vcur shape [N, n_batch, n_embd/n_head, n_head] + // V shape [N, n_embd/n_head, n_head, n_batch] + struct ggml_tensor * V = + ggml_permute(ctx0, + Vcur, + 0, 3, 1, 2); + assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); + + // KQV shape [n_embd/n_head, N, n_head, n_batch] + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); + // KQV_merged shape + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); + assert_shape_2d(cur, n_embd, N*n_batch); + + // projection (no bias) + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].wo, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // lctx.use_buf(ctx0, 1); + + // inpFF shape [n_embd,N*n_batch,1,1] + struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); + assert_shape_2d(inpFF, n_embd, N*n_batch); + + // feed-forward network + { + // norm + { + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_rms_norm(ctx0, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // cur = ffn_norm*cur + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul(ctx0, + ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // tmp shape [n_ff,N*n_batch,1,1] + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model->layers[il].w3, + cur); + assert_shape_2d(tmp, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w1, + cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // SILU activation + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_silu(ctx0, cur); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_ff,N*n_batch,1,1] + cur = ggml_mul(ctx0, cur, tmp); + assert_shape_2d(cur, n_ff, N*n_batch); + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_mul_mat(ctx0, + model->layers[il].w2, + cur); + assert_shape_2d(cur, n_embd, N*n_batch); + } + + // cur shape [n_embd,N*n_batch,1,1] + cur = ggml_add_inplace(ctx0, cur, inpFF); + assert_shape_2d(cur, n_embd, N*n_batch); + + // input for next layer + // inpL shape [n_embd,N*n_batch,1,1] + inpL = cur; + assert_shape_2d(inpL, n_embd, N*n_batch); + } + + // norm + { + + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_rms_norm(ctx0, inpL); + assert_shape_2d(inpL, n_embd, N*n_batch); + + // inpL = norm*inpL + // inpL shape [n_embd,N*n_batch,1,1] + inpL = ggml_mul(ctx0, + ggml_repeat(ctx0, model->norm, inpL), + inpL); + + assert_shape_2d(inpL, n_embd, N*n_batch); + + //embeddings = inpL; + } + + // lm_head + // inpL shape [n_vocab,N*n_batch,1,1] + inpL = ggml_mul_mat(ctx0, model->output, inpL); + assert_shape_2d(inpL, n_vocab, N*n_batch); + + { + // inpL shape [n_vocab,N,n_batch,1] + inpL = ggml_reshape_3d(ctx0, + inpL, + n_vocab, N, n_batch); + assert_shape_3d(inpL, n_vocab, N, n_batch); + } + + // run the computation + ggml_build_forward_expand(gf, inpL); + + return inpL; +} + void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { assert(logits->n_dims == 2); assert(probs->n_dims == 2); @@ -1627,7 +1855,11 @@ int main(int argc, char ** argv) { get_example_targets_batch(ctx0, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs); - struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch); + struct ggml_tensor * logits = + (n_past == 0) + ? forward_batch_wo_cache(&model, ctx0, &gf, tokens_input, n_tokens, n_batch) + : forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch); + // struct ggml_tensor * se = square_error_loss(ctx0, logits, target_logits); struct ggml_tensor * ce = cross_entropy_loss(ctx0, logits, target_probs); // struct ggml_tensor * e = ggml_add(ctx0, se, ce);