(wip) support mergekit-extracted lora

This commit is contained in:
Xuan Son Nguyen 2025-01-07 00:35:16 +01:00
parent dc7cef9f37
commit 93fbfd022c
4 changed files with 102 additions and 6 deletions

View file

@ -226,6 +226,9 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
# models produced by mergekit-extract-lora have token embeddings in the adapter
base_name = base_name.replace(".lora_embedding_A", ".weight")
base_name = base_name.replace(".lora_embedding_B", ".weight")
return base_name
@ -260,6 +263,10 @@ def parse_args() -> argparse.Namespace:
"--base", type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"--base-model-id", type=str,
help="the model ID of the base model, if it is not available locally or in the adapter config. If specified, it will ignore --base and load the base model config from the Hugging Face hub (Example: 'meta-llama/Llama-3.2-1B-Instruct')",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
@ -290,6 +297,7 @@ if __name__ == '__main__':
dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
base_model_id: str | None = args.base_model_id
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
@ -313,7 +321,10 @@ if __name__ == '__main__':
lparams: dict[str, Any] = json.load(f)
# load base model
if dir_base_model is None:
if base_model_id is not None:
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
hparams = load_hparams_from_hf(base_model_id)
elif dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
@ -371,17 +382,26 @@ if __name__ == '__main__':
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
# note: lora_embedding is transposed by mergekit-extract-lora, so it's reversed here
is_lora_a = ".lora_A.weight" in name or ".lora_embedding_B" in name
is_lora_b = ".lora_B.weight" in name or ".lora_embedding_A" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
# mergekit-extract-lora add these layernorm to the adapter
if ".layernorm" or ".norm" in name:
yield (base_name, tensor)
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
sys.exit(1)
# mergekit-extract-lora transposes this tensor, we need to transpose it back
if ".lora_embedding" in name:
tensor = tensor.T
if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
@ -407,6 +427,13 @@ if __name__ == '__main__':
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError("lm_head is present in adapter, but is ignored in base model")
for dest_name, dest_data in dest:
# mergekit-extract-lora add these layernorm to the adapter
if "_norm" in dest_name:
assert dest_data.dim() == 1
yield (dest_name, dest_data)
continue
# otherwise, we must get the lora_A and lora_B tensors
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()

View file

@ -242,6 +242,9 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
} else {
ab_map[name].b = cur;
}
} else if (str_endswith(name, "_norm.weight")) {
// norm only has 1 dim, so tensor b == nullptr
ab_map[name] = llama_lora_weight(cur);
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
@ -251,6 +254,9 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
if (w.is_norm) {
continue;
}
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
@ -279,6 +285,24 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
}
// add norm vectors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
if (w.is_norm) {
GGML_ASSERT(w.a != nullptr);
// device buft and device ctx
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
struct ggml_tensor * tensor_norm = ggml_dup_tensor(dev_ctx, w.a);
ggml_set_name(tensor_norm, w.a->name);
adapter.ab_map[it.first] = llama_lora_weight(tensor_norm);
}
}
// allocate tensors / buffers and zero
{
adapter.ctxs.reserve(ctx_map.size());
@ -311,9 +335,11 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
auto orig = ab_map[it.first];
auto dev = it.second;
set_tensor(orig.a, dev.a);
if (!dev.is_norm) {
set_tensor(orig.b, dev.b);
}
}
}
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}

View file

@ -45,7 +45,11 @@ struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
// note: norm only has 1 dim, so tensor b == nullptr
bool is_norm = false; // is this a norm vector? (e.g. _norm.weight)
llama_lora_weight() = default;
llama_lora_weight(struct ggml_tensor * a) : a(a), is_norm(true) {}
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};

View file

@ -2545,6 +2545,28 @@ static struct ggml_tensor * llm_build_inp_embd(
ggml_set_input(lctx.inp_tokens);
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
//printf("tok_embd shape: %d x %d\n", tok_embd->ne[0], tok_embd->ne[1]);
//printf("inpL shape: %d x %d\n", inpL->ne[0], inpL->ne[1]);
// apply lora for embedding tokens if needed
for (auto & it : lctx.lora_adapters) {
struct llama_lora_weight * lora = it.first->get_weight(tok_embd);
if (lora == nullptr) {
continue;
}
const float alpha = it.first->alpha;
const float rank = (float) lora->b->ne[0];
const float scale = alpha ? it.second * alpha / rank : it.second;
auto ss = ggml_get_rows(ctx, lora->b, lctx.inp_tokens);
//printf("a shape: %d x %d\n", lora->a->ne[0], lora->a->ne[1]);
//printf("b shape: %d x %d\n", lora->b->ne[0], lora->b->ne[1]);
//printf("ss shape: %d x %d\n", ss->ne[0], ss->ne[1]);
struct ggml_tensor * inpL_delta = ggml_scale(ctx, ggml_mul_mat(
ctx, ss, ggml_transpose(ctx, lora->a)
), scale);
//printf("inpL_delta shape: %d x %d\n", inpL_delta->ne[0], inpL_delta->ne[1]);
inpL = ggml_add(ctx, inpL, ggml_cont(ctx, ggml_transpose(ctx, inpL_delta)));
}
} else {
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
inpL = lctx.inp_embd;
@ -3897,9 +3919,17 @@ struct llm_build_context {
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * attn_norm = model.layers[il].attn_norm;
for (auto & it : lctx.lora_adapters) {
struct llama_lora_weight * lora = it.first->get_weight(model.layers[il].attn_norm);
if (lora && lora->is_norm) {
attn_norm = ggml_add(ctx0, attn_norm, ggml_scale(ctx0, lora->a, 0.5));
}
}
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
@ -3967,8 +3997,17 @@ struct llm_build_context {
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
struct ggml_tensor * ffn_norm = model.layers[il].ffn_norm;
// for (auto & it : lctx.lora_adapters) {
// struct llama_lora_weight * lora = it.first->get_weight(ffn_norm);
// if (lora && lora->is_norm) {
// ffn_norm = ggml_add(ctx0, ffn_norm, lora->a);
// }
// }
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);