Merge branch 'master' into concedo

# Conflicts:
#	CMakeLists.txt
#	Makefile
#	ggml-cuda.cu
#	ggml-cuda.h
This commit is contained in:
Concedo 2023-05-02 14:38:31 +08:00
commit 94827172e0
23 changed files with 763 additions and 389 deletions

1
.gitignore vendored
View file

@ -32,6 +32,7 @@ models/*
/vdot /vdot
/Pipfile /Pipfile
build-info.h
arm_neon.h arm_neon.h
compile_commands.json compile_commands.json

View file

@ -251,10 +251,14 @@ gpttype_adapter.o: gpttype_adapter.cpp
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
clean: clean:
rm -vf *.o main quantize_llama quantize_gpt2 quantize_gptj quantize_neox quantize-stats perplexity embedding benchmark-matmult main.exe quantize_llama.exe quantize_gptj.exe quantize_gpt2.exe quantize_neox.exe koboldcpp.dll koboldcpp_openblas.dll koboldcpp_noavx2.dll koboldcpp_openblas_noavx2.dll koboldcpp_clblast.dll koboldcpp.so koboldcpp_openblas.so koboldcpp_noavx2.so koboldcpp_openblas_noavx2.so koboldcpp_clblast.so gptj.exe gpt2.exe rm -vf *.o main quantize_llama quantize_gpt2 quantize_gptj quantize_neox quantize-stats perplexity embedding benchmark-matmult save-load-state build-info.h main.exe quantize_llama.exe quantize_gptj.exe quantize_gpt2.exe quantize_neox.exe koboldcpp.dll koboldcpp_openblas.dll koboldcpp_noavx2.dll koboldcpp_openblas_noavx2.dll koboldcpp_clblast.dll koboldcpp.so koboldcpp_openblas.so koboldcpp_noavx2.so koboldcpp_openblas_noavx2.so koboldcpp_clblast.so gptj.exe gpt2.exe
main: examples/main/main.cpp ggml.o llama.o common.o $(OBJS) #
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) # Examples
#
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo @echo
@echo '==== Run ./main -h for help. ====' @echo '==== Run ./main -h for help. ===='
@echo @echo

View file

@ -2,3 +2,6 @@ set(TARGET benchmark)
add_executable(${TARGET} benchmark-matmult.cpp) add_executable(${TARGET} benchmark-matmult.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,5 +1,6 @@
#include <locale.h> #include <locale.h>
#include "ggml.h" #include "ggml.h"
#include "build-info.h"
#include <assert.h> #include <assert.h>
#include <math.h> #include <math.h>
#include <cstring> #include <cstring>
@ -90,9 +91,10 @@ int main(int argc, char ** argv) {
} }
} }
// create the ggml context fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
printf("Starting Test\n"); printf("Starting Test\n");
// create the ggml context
struct ggml_context * ctx; struct ggml_context * ctx;
//const int sizex = 4096; //const int sizex = 4096;
//const int sizey = 11008; //const int sizey = 11008;

View file

@ -2,3 +2,6 @@ set(TARGET embedding)
add_executable(${TARGET} embedding.cpp) add_executable(${TARGET} embedding.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,5 +1,6 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "build-info.h"
#include <ctime> #include <ctime>
@ -18,11 +19,13 @@ int main(int argc, char ** argv) {
"expect poor results\n", __func__, params.n_ctx); "expect poor results\n", __func__, params.n_ctx);
} }
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed <= 0) { if (params.seed <= 0) {
params.seed = time(NULL); params.seed = time(NULL);
} }
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) { if (params.random_prompt) {

View file

@ -2,3 +2,6 @@ set(TARGET main)
add_executable(${TARGET} main.cpp) add_executable(${TARGET} main.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -5,6 +5,7 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "build-info.h"
#include <cassert> #include <cassert>
#include <cinttypes> #include <cinttypes>
@ -81,11 +82,13 @@ int main(int argc, char ** argv) {
"expect poor results\n", __func__, params.n_ctx); "expect poor results\n", __func__, params.n_ctx);
} }
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed <= 0) { if (params.seed <= 0) {
params.seed = time(NULL); params.seed = time(NULL);
} }
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) { if (params.random_prompt) {
@ -161,23 +164,22 @@ int main(int argc, char ** argv) {
std::vector<llama_token> session_tokens; std::vector<llama_token> session_tokens;
if (!path_session.empty()) { if (!path_session.empty()) {
fprintf(stderr, "%s: attempting to load saved session from %s..\n", __func__, path_session.c_str()); fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
// REVIEW - fopen to check for existing session // fopen to check for existing session
FILE * fp = std::fopen(path_session.c_str(), "rb"); FILE * fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL) { if (fp != NULL) {
std::fclose(fp); std::fclose(fp);
session_tokens.resize(params.n_ctx); session_tokens.resize(params.n_ctx);
size_t n_token_count_out = 0; size_t n_token_count_out = 0;
const size_t n_session_bytes = llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out); if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out); session_tokens.resize(n_token_count_out);
if (n_session_bytes > 0) { fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
fprintf(stderr, "%s: loaded %zu bytes of session data!\n", __func__, n_session_bytes);
} else {
fprintf(stderr, "%s: could not load session file, will recreate\n", __func__);
}
} else { } else {
fprintf(stderr, "%s: session file does not exist, will create\n", __func__); fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
} }
@ -214,7 +216,7 @@ int main(int argc, char ** argv) {
} }
// number of tokens to keep when resetting context // number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) { if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
params.n_keep = (int)embd_inp.size(); params.n_keep = (int)embd_inp.size();
} }
@ -329,7 +331,7 @@ int main(int argc, char ** argv) {
// insert n_left/2 tokens at the start of embd from last_n_tokens // insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
// REVIEW - stop saving session if we run out of context // stop saving session if we run out of context
path_session = ""; path_session = "";
//printf("\n---\n"); //printf("\n---\n");
@ -355,6 +357,7 @@ int main(int argc, char ** argv) {
n_session_consumed++; n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) { if (n_session_consumed >= (int) session_tokens.size()) {
++i;
break; break;
} }
} }

View file

@ -2,3 +2,6 @@ set(TARGET perplexity)
add_executable(${TARGET} perplexity.cpp) add_executable(${TARGET} perplexity.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,5 +1,6 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "build-info.h"
#include <cmath> #include <cmath>
#include <ctime> #include <ctime>
@ -106,11 +107,13 @@ int main(int argc, char ** argv) {
"expect poor results\n", __func__, params.n_ctx); "expect poor results\n", __func__, params.n_ctx);
} }
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed <= 0) { if (params.seed <= 0) {
params.seed = time(NULL); params.seed = time(NULL);
} }
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) { if (params.random_prompt) {

View file

@ -1,4 +1,5 @@
#include "ggml.h" #include "ggml.h"
#include "build-info.h"
#define LLAMA_API_INTERNAL #define LLAMA_API_INTERNAL
#include "llama.h" #include "llama.h"
@ -308,6 +309,8 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
// load the model // load the model
fprintf(stderr, "Loading model\n"); fprintf(stderr, "Loading model\n");

View file

@ -2,3 +2,6 @@ set(TARGET quantize)
add_executable(${TARGET} quantize.cpp) add_executable(${TARGET} quantize.cpp)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -2,3 +2,6 @@ set(TARGET save-load-state)
add_executable(${TARGET} save-load-state.cpp) add_executable(${TARGET} save-load-state.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,5 +1,6 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "build-info.h"
#include <vector> #include <vector>
#include <cstdio> #include <cstdio>
@ -17,6 +18,8 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.n_predict < 0) { if (params.n_predict < 0) {
params.n_predict = 16; params.n_predict = 16;
} }

View file

@ -1,11 +1,38 @@
#include <cstddef>
#include <cstdint>
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
#include <cuda_fp16.h>
#include <atomic> #include <atomic>
#include "ggml-cuda.h"
typedef uint16_t ggml_fp16_t; #include <cuda_runtime.h>
static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size"); #include <cublas_v2.h>
#include <cuda_fp16.h>
#include "ggml-cuda.h"
#include "ggml.h"
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
#define QK4_0 32 #define QK4_0 32
typedef struct { typedef struct {
@ -24,22 +51,14 @@ static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 b
#define QK4_2 16 #define QK4_2 16
typedef struct { typedef struct {
__half d; // delta half d; // delta
uint8_t qs[QK4_2 / 2]; // nibbles / quants uint8_t qs[QK4_2 / 2]; // nibbles / quants
} block_q4_2; } block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
#define QK4_3 16
typedef struct {
__half d; // delta
__half m; // min
uint8_t qs[QK4_3 / 2]; // nibbles / quants
} block_q4_3;
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
#define QK5_0 32 #define QK5_0 32
typedef struct { typedef struct {
__half d; // delta half d; // delta
uint8_t qh[4]; // 5-th bit of quants uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0; } block_q5_0;
@ -47,9 +66,9 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5
#define QK5_1 32 #define QK5_1 32
typedef struct { typedef struct {
__half d; // delta half d; // delta
__half m; // min half m; // min
uint32_t qh; // 5-th bit of quants uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1; } block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
@ -131,30 +150,6 @@ static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
} }
} }
static __global__ void dequantize_block_q4_3(const void * vx, float * y) {
const block_q4_3 * x = (const block_q4_3 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
const float m = x[i].m;
const uint8_t * pp = x[i].qs;
for (int l = 0; l < QK4_3; l += 2) {
const uint8_t vi = pp[l/2];
const int8_t vi0 = vi & 0xf;
const int8_t vi1 = vi >> 4;
const float v0 = vi0*d + m;
const float v1 = vi1*d + m;
y[i*QK4_3 + l + 0] = v0;
y[i*QK4_3 + l + 1] = v1;
}
}
static __global__ void dequantize_block_q5_0(const void * vx, float * y) { static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
const block_q5_0 * x = (const block_q5_0 *) vx; const block_q5_0 * x = (const block_q5_0 *) vx;
@ -194,7 +189,8 @@ static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
const uint8_t * pp = x[i].qs; const uint8_t * pp = x[i].qs;
const uint32_t qh = x[i].qh; uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int l = 0; l < QK5_1; l += 2) { for (int l = 0; l < QK5_1; l += 2) {
const uint8_t vi = pp[l/2]; const uint8_t vi = pp[l/2];
@ -229,42 +225,50 @@ static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
} }
} }
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0; const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
} }
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1; const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
} }
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_2; const int nb = k / QK4_2;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
} }
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_3;
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0; const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
} }
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_1; const int nb = k / QK5_1;
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
} }
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK8_0; const int nb = k / QK8_0;
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y); dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
} }
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) { // TODO: optimize
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
const half * x = (const half *) vx;
const int i = blockIdx.x;
y[i] = __half2float(x[i]);
}
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
}
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
switch (type) { switch (type) {
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda; return dequantize_row_q4_0_cuda;
@ -278,6 +282,8 @@ dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
return dequantize_row_q5_1_cuda; return dequantize_row_q5_1_cuda;
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda; return dequantize_row_q8_0_cuda;
case GGML_TYPE_F16:
return convert_fp16_to_fp32_cuda;
default: default:
return nullptr; return nullptr;
} }
@ -308,7 +314,7 @@ struct cuda_buffer {
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock); scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
@ -327,7 +333,7 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr; return ptr;
} }
void ggml_cuda_pool_free(void * ptr, size_t size) { static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock); scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
@ -342,28 +348,55 @@ void ggml_cuda_pool_free(void * ptr, size_t size) {
CUDA_CHECK(cudaFree(ptr)); CUDA_CHECK(cudaFree(ptr));
} }
cublasHandle_t g_cublasH = nullptr; #define GGML_CUDA_MAX_STREAMS 8
cudaStream_t g_cudaStream = nullptr; #define GGML_CUDA_MAX_EVENTS 64
cudaStream_t g_cudaStream2 = nullptr; static cublasHandle_t g_cublasH = nullptr;
cudaEvent_t g_cudaEvent = nullptr; static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
void ggml_init_cublas() { void ggml_init_cublas() {
if (g_cublasH == nullptr) { if (g_cublasH == nullptr) {
// create cublas handle, bind a stream // create streams
CUBLAS_CHECK(cublasCreate(&g_cublasH)); for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking)); CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream)); CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
}
// create events
for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
}
// create additional stream and event for synchronization // create cublas handle
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking)); CUBLAS_CHECK(cublasCreate(&g_cublasH));
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming)); CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
// configure logging to stdout // configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL)); // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
} }
} }
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { void * ggml_cuda_host_malloc(size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return nullptr;
}
void * ptr = nullptr;
cudaError_t err = cudaMallocHost((void **) &ptr, size);
if (err != cudaSuccess) {
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr;
}
return ptr;
}
void ggml_cuda_host_free(void * ptr) {
CUDA_CHECK(cudaFreeHost(ptr));
}
static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
const uint64_t ne0 = src->ne[0]; const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1]; const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0]; const uint64_t nb0 = src->nb[0];
@ -391,12 +424,293 @@ cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src,
} }
} }
void * ggml_cuda_host_malloc(size_t size) { static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
void * ptr; const int64_t ne00 = src0->ne[0];
CUDA_CHECK(cudaMallocHost((void **) &ptr, size)); const int64_t ne01 = src0->ne[1];
return ptr; const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
size_t x_size, y_size, d_size;
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
float * c_X = d_X + i * x_ne;
float * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
// copy data to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, ne00,
c_Y, ne10,
&beta, c_D, ne01));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
} }
void ggml_cuda_host_free(void * ptr) { static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
CUDA_CHECK(cudaFreeHost(ptr)); const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
size_t x_size, y_size, d_size;
half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
half * c_X = d_X + i * x_ne;
half * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
// copy src0 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
// convert src1 to fp16
// TODO: use multiple threads
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
}
}
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) {
// very slow due to no inlining
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
}
}
}
// copy src1 to device
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, CUDA_R_16F, ne00,
c_Y, CUDA_R_16F, ne10,
&beta, c_D, CUDA_R_32F, ne01,
CUBLAS_COMPUTE_32F_FAST_16F,
CUBLAS_GEMM_DEFAULT));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
}
static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_type type = src0->type;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
size_t x_size, y_size, d_size, q_size;
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
GGML_ASSERT(to_fp32_cuda != nullptr);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
float * c_X = d_X + i * x_ne;
float * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
char * c_Q = d_Q + i * q_sz;
// copy src0 and convert to fp32 on device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
// copy src1 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
// wait for conversion
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, ne00,
c_Y, ne10,
&beta, c_D, ne01));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_Q, q_size);
}
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
return true;
}
return false;
}
bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
size_t src0_sz = ggml_nbytes(src0);
size_t src1_sz = ggml_nbytes(src1);
// mul_mat_q: src0 is converted to fp32 on device
size_t mul_mat_q_transfer = src0_sz + src1_sz;
// mul_mat_f16: src1 is converted to fp16 on cpu
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
// choose the smaller one to transfer to the device
// TODO: this is not always the best choice due to the overhead of converting to fp16
return mul_mat_f16_transfer < mul_mat_q_transfer;
}
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
if (src0->type == GGML_TYPE_F32) {
ggml_cuda_mul_mat_f32(src0, src1, dst);
}
else if (src0->type == GGML_TYPE_F16) {
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
}
else {
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
}
}
else if (ggml_is_quantized(src0->type)) {
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
}
else {
GGML_ASSERT(false);
}
}
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
}
else {
return 0;
}
} }

View file

@ -1,55 +1,19 @@
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include "ggml.h" #include "ggml.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
extern cublasHandle_t g_cublasH;
extern cudaStream_t g_cudaStream;
extern cudaStream_t g_cudaStream2;
extern cudaEvent_t g_cudaEvent;
void ggml_init_cublas(void); void ggml_init_cublas(void);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// TODO: export these with GGML_API
void * ggml_cuda_host_malloc(size_t size); void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr); void ggml_cuda_host_free(void * ptr);
void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size);
void ggml_cuda_pool_free(void * ptr, size_t size);
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream);
typedef void (*dequantize_row_q_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(enum ggml_type type);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

254
ggml.c
View file

@ -135,14 +135,6 @@ inline static void* ggml_aligned_malloc(size_t size) {
#define UNUSED(x) (void)(x) #define UNUSED(x) (void)(x)
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#if defined(GGML_USE_ACCELERATE) #if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h> #include <Accelerate/Accelerate.h>
#elif defined(GGML_USE_OPENBLAS) #elif defined(GGML_USE_OPENBLAS)
@ -371,6 +363,32 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
return GGML_FP32_TO_FP16(x); return GGML_FP32_TO_FP16(x);
} }
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
for (size_t i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
size_t i = 0;
#if defined(__F16C__)
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for(; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
// //
// timing // timing
// //
@ -4551,12 +4569,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
} }
// initialize cuBLAS #if defined(GGML_USE_CUBLAS)
#if defined(GGML_USE_CUBLAS)
ggml_init_cublas(); ggml_init_cublas();
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)
ggml_cl_init(); ggml_cl_init();
#endif #endif
is_first_call = false; is_first_call = false;
} }
@ -4637,7 +4654,7 @@ void ggml_free(struct ggml_context * ctx) {
} }
size_t ggml_used_mem(const struct ggml_context * ctx) { size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end->offs + ctx->objects_end->size; return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
} }
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) { size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
@ -8328,7 +8345,7 @@ static void ggml_compute_forward_rms_norm(
// ggml_compute_forward_mul_mat // ggml_compute_forward_mul_mat
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
// helper function to determine if it is better to use BLAS or not // helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster // for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas( static bool ggml_compute_forward_mul_mat_use_blas(
@ -8344,12 +8361,9 @@ static bool ggml_compute_forward_mul_mat_use_blas(
const int64_t ne1 = dst->ne[1]; const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these // TODO: find the optimal values for these
if ( if (ggml_is_contiguous(src0) &&
#if !defined(GGML_USE_CUBLAS)
ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) && ggml_is_contiguous(src1) &&
#endif (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true; return true;
@ -8357,7 +8371,6 @@ static bool ggml_compute_forward_mul_mat_use_blas(
return false; return false;
} }
#endif #endif
static void ggml_compute_forward_mul_mat_f32( static void ggml_compute_forward_mul_mat_f32(
@ -8373,7 +8386,7 @@ static void ggml_compute_forward_mul_mat_f32(
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3]; const int64_t ne03 = src0->ne[3];
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
#endif #endif
const int64_t ne11 = src1->ne[1]; const int64_t ne11 = src1->ne[1];
@ -8430,7 +8443,16 @@ static void ggml_compute_forward_mul_mat_f32(
// nb01 >= nb00 - src0 is not transposed // nb01 >= nb00 - src0 is not transposed
// compute by src0 rows // compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) { if (params->ith != 0) {
return; return;
@ -8444,43 +8466,13 @@ static void ggml_compute_forward_mul_mat_f32(
return; return;
} }
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
#if !defined(GGML_USE_CUBLAS)
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CLBLAST)
// copy data to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#elif defined(GGML_USE_CLBLAST)
// zT = y * xT // zT = y * xT
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
ne11, ne01, ne10, ne11, ne01, ne10,
@ -8497,12 +8489,6 @@ static void ggml_compute_forward_mul_mat_f32(
#endif #endif
} }
} }
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
#endif
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return; return;
@ -8632,7 +8618,16 @@ static void ggml_compute_forward_mul_mat_f16_f32(
// nb01 >= nb00 - src0 is not transposed // nb01 >= nb00 - src0 is not transposed
// compute by src0 rows // compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
@ -8648,37 +8643,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
return; return;
} }
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
#if defined(GGML_USE_CUBLAS)
// copy src0 while converting src1
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
// with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne11; ++i01) {
for (int64_t i00 = 0; i00 < ne10; ++i00) {
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
}
}
assert(id*sizeof(ggml_fp16_t) <= params->wsize);
}
#else
float * const wdata = params->wdata; float * const wdata = params->wdata;
{ {
size_t id = 0; size_t id = 0;
@ -8690,28 +8656,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
assert(id*sizeof(float) <= params->wsize); assert(id*sizeof(float) <= params->wsize);
} }
#endif
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CLBLAST)
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
CUBLAS_CHECK(
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, CUDA_R_16F, ne00,
d_Y, CUDA_R_16F, ne10,
&beta, d_D, CUDA_R_32F, ne01,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#elif defined(GGML_USE_CLBLAST)
const float * x = wdata; const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
@ -8740,12 +8686,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
} }
} }
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
#endif
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
return; return;
@ -8898,7 +8838,16 @@ static void ggml_compute_forward_mul_mat_q_f32(
// nb01 >= nb00 - src0 is not transposed // nb01 >= nb00 - src0 is not transposed
// compute by src0 rows // compute by src0 rows
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) { if (params->ith != 0) {
return; return;
@ -8912,25 +8861,8 @@ static void ggml_compute_forward_mul_mat_q_f32(
return; return;
} }
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size, q_size;
float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
GGML_ASSERT(dequantize_row_q_cuda != NULL);
#else
float * const wdata = params->wdata; float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
@ -8938,14 +8870,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CLBLAST)
// copy and dequantize on device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
#elif defined(GGML_USE_CLBLAST)
const void* x = (char *) src0->data + i03*nb03 + i02*nb02; const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
#else #else
{ {
@ -8961,24 +8886,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
const float * x = wdata; const float * x = wdata;
#endif #endif
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CLBLAST)
// copy data to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// wait for dequantization
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
// compute
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, d_X, ne00,
d_Y, ne10,
&beta, d_D, ne01));
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
#elif defined(GGML_USE_CLBLAST)
// zT = y * xT // zT = y * xT
ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
ne11, ne01, ne10, ne11, ne01, ne10,
@ -8996,13 +8904,6 @@ static void ggml_compute_forward_mul_mat_q_f32(
} }
} }
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_Q, q_size);
#endif
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return; return;
@ -11989,18 +11890,21 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
size_t cur = 0; size_t cur = 0;
#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
}
else
#endif
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning // the threads are still spinning
#if defined(GGML_USE_CUBLAS)
// with cuBLAS, we need memory for the full 3D / 4D data of src1
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
#else
// here we need memory just for single 2D matrix from src0 // here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
#endif
} else { } else {
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
} }
@ -12009,13 +11913,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
#endif #endif
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
cur = 0; cur = 0;
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; node->n_tasks = 1;
} }
#endif #endif
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; node->n_tasks = 1;
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);

11
ggml.h
View file

@ -197,6 +197,14 @@
#define GGML_MAX_OPT 4 #define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -212,6 +220,9 @@ extern "C" {
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
struct ggml_object; struct ggml_object;
struct ggml_context; struct ggml_context;

View file

@ -243,7 +243,8 @@ struct llama_mmap {
#else #else
static constexpr bool SUPPORTED = false; static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *) { llama_mmap(struct llama_file *, bool prefetch = true) {
(void)prefetch;
throw std::string("mmap not supported"); throw std::string("mmap not supported");
} }
#endif #endif
@ -382,8 +383,13 @@ struct llama_mlock {
#else #else
static constexpr bool SUPPORTED = false; static constexpr bool SUPPORTED = false;
void raw_lock(const void * addr, size_t size) { size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t size) {
fprintf(stderr, "warning: mlock not supported on this system\n"); fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
} }
void raw_unlock(const void * addr, size_t size) {} void raw_unlock(const void * addr, size_t size) {}
@ -395,6 +401,8 @@ struct llama_buffer {
uint8_t * addr = NULL; uint8_t * addr = NULL;
size_t size = 0; size_t size = 0;
llama_buffer() = default;
void resize(size_t size) { void resize(size_t size) {
delete[] addr; delete[] addr;
addr = new uint8_t[size]; addr = new uint8_t[size];
@ -404,27 +412,59 @@ struct llama_buffer {
~llama_buffer() { ~llama_buffer() {
delete[] addr; delete[] addr;
} }
// disable copy and move
llama_buffer(const llama_buffer&) = delete;
llama_buffer(llama_buffer&&) = delete;
llama_buffer& operator=(const llama_buffer&) = delete;
llama_buffer& operator=(llama_buffer&&) = delete;
}; };
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h" #include "ggml-cuda.h"
struct llama_ctx_buffer { struct llama_ctx_buffer {
uint8_t * addr = NULL; uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0; size_t size = 0;
llama_ctx_buffer() = default;
void resize(size_t size) { void resize(size_t size) {
if (addr) { free();
ggml_cuda_host_free(addr);
}
addr = (uint8_t *) ggml_cuda_host_malloc(size); addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size; this->size = size;
} }
~llama_ctx_buffer() { void free() {
if (addr) { if (addr) {
ggml_cuda_host_free(addr); if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
} }
addr = NULL;
} }
~llama_ctx_buffer() {
free();
}
// disable copy and move
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
}; };
#else #else
typedef llama_buffer llama_ctx_buffer; typedef llama_buffer llama_ctx_buffer;

148
llama.cpp
View file

@ -736,8 +736,7 @@ struct llama_model_loader {
LLAMA_ASSERT(offset == lt.size); LLAMA_ASSERT(offset == lt.size);
} else if (lt.split_type == SPLIT_BY_COLUMNS) { } else if (lt.split_type == SPLIT_BY_COLUMNS) {
// Let's load the data into temporary buffers to ensure the OS performs large loads. // Let's load the data into temporary buffers to ensure the OS performs large loads.
std::vector<llama_buffer> tmp_bufs; std::vector<llama_buffer> tmp_bufs(lt.shards.size());
tmp_bufs.resize(lt.shards.size());
for (size_t i = 0; i < lt.shards.size(); i++) { for (size_t i = 0; i < lt.shards.size(); i++) {
llama_load_tensor_shard & shard = lt.shards.at(i); llama_load_tensor_shard & shard = lt.shards.at(i);
llama_file & file = file_loaders.at(shard.file_idx)->file; llama_file & file = file_loaders.at(shard.file_idx)->file;
@ -2384,7 +2383,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
} }
} }
int llama_get_kv_cache_token_count(struct llama_context * ctx) { int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->model.kv_self.n; return ctx->model.kv_self.n;
} }
@ -2398,7 +2397,7 @@ void llama_set_rng_seed(struct llama_context * ctx, int seed) {
} }
// Returns the size of the state // Returns the size of the state
size_t llama_get_state_size(struct llama_context * ctx) { size_t llama_get_state_size(const struct llama_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes. // for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t); const size_t s_rng_size = sizeof(size_t);
@ -2578,6 +2577,85 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
return nread; return nread;
} }
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
llama_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_hparams));
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
const size_t n_state_size_exp = llama_get_state_size(ctx);
if (n_state_size_cur != n_state_size_exp) {
fprintf(stderr, "%s : the state size in session file didn't match! expected %zu, got %zu\n", __func__, n_state_size_exp, n_state_size_cur);
return false;
}
std::vector<uint8_t> state_data(n_state_size_cur);
file.read_raw(state_data.data(), n_state_size_cur);
llama_set_state_data(ctx, state_data.data());
}
return true;
}
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state
{
const size_t n_state_size = llama_get_state_size(ctx);
std::vector<uint8_t> state_data(n_state_size);
llama_copy_state_data(ctx, state_data.data());
file.write_raw(state_data.data(), n_state_size);
}
return true;
}
int llama_eval( int llama_eval(
struct llama_context * ctx, struct llama_context * ctx,
const llama_token * tokens, const llama_token * tokens,
@ -2616,15 +2694,15 @@ int llama_tokenize(
return res.size(); return res.size();
} }
int llama_n_vocab(struct llama_context * ctx) { int llama_n_vocab(const struct llama_context * ctx) {
return ctx->vocab.id_to_token.size(); return ctx->vocab.id_to_token.size();
} }
int llama_n_ctx(struct llama_context * ctx) { int llama_n_ctx(const struct llama_context * ctx) {
return ctx->model.hparams.n_ctx; return ctx->model.hparams.n_ctx;
} }
int llama_n_embd(struct llama_context * ctx) { int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd; return ctx->model.hparams.n_embd;
} }
@ -2636,7 +2714,7 @@ float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data(); return ctx->embedding.data();
} }
const char * llama_token_to_str(struct llama_context * ctx, llama_token token) { const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
if (token >= llama_n_vocab(ctx)) { if (token >= llama_n_vocab(ctx)) {
return nullptr; return nullptr;
} }
@ -2705,57 +2783,3 @@ const char * llama_print_system_info(void) {
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) { std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors_by_name; return ctx->model.tensors_by_name;
} }
size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
// TODO leverage mmap
llama_file file(path_session, "rb");
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (!(magic == 'ggsn' && version == 0)) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return 0;
}
llama_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_hparams));
// REVIEW
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
return 0;
}
const uint32_t n_token_count = file.read_u32();
LLAMA_ASSERT(n_token_capacity >= n_token_count);
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
const size_t n_state_size = file.size - file.tell();
const size_t n_orig_state_size = llama_get_state_size(ctx);
if (n_state_size != n_orig_state_size) {
fprintf(stderr, "%s : failed to validate state size\n", __func__);
}
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
file.read_raw(state_data.get(), n_state_size);
return llama_set_state_data(ctx, state_data.get());
}
size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
// TODO save temp & swap
llama_file file(path_session, "wb");
const size_t n_state_size = llama_get_state_size(ctx);
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
llama_copy_state_data(ctx, state_data.get());
file.write_u32('ggsn'); // magic
file.write_u32(0); // version
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
file.write_u32((uint32_t) n_token_count); // REVIEW
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
file.write_raw(state_data.get(), n_state_size);
return n_state_size; // REVIEW
}

24
llama.h
View file

@ -19,9 +19,11 @@
# define LLAMA_API # define LLAMA_API
#endif #endif
#define LLAMA_FILE_VERSION 1 #define LLAMA_FILE_VERSION 1
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex #define LLAMA_FILE_MAGIC 'ggjt'
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files #define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
#define LLAMA_SESSION_MAGIC 'ggsn'
#define LLAMA_SESSION_VERSION 0
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -120,13 +122,13 @@ extern "C" {
int n_threads); int n_threads);
// Returns the number of tokens in the KV cache // Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx); LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the current rng seed. // Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed); LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
// Returns the size in bytes of the state (rng, logits, embedding and kv_cache) // Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
LLAMA_API size_t llama_get_state_size(struct llama_context * ctx); LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address. // Copies the state to the specified destination address.
// Destination needs to have allocated enough memory. // Destination needs to have allocated enough memory.
@ -138,8 +140,8 @@ extern "C" {
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src); LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
// Save/load session file // Save/load session file
LLAMA_API size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token. // Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process // tokens + n_tokens is the provided batch of new tokens to process
@ -164,9 +166,9 @@ extern "C" {
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos);
LLAMA_API int llama_n_vocab(struct llama_context * ctx); LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (struct llama_context * ctx); LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (struct llama_context * ctx); LLAMA_API int llama_n_embd (const struct llama_context * ctx);
// Token logits obtained from the last call to llama_eval() // Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row // The logits for the last token are stored in the last row
@ -180,7 +182,7 @@ extern "C" {
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context // Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token); LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(); LLAMA_API llama_token llama_token_bos();

53
scripts/build-info.cmake Normal file
View file

@ -0,0 +1,53 @@
set(TEMPLATE_FILE "${CMAKE_BINARY_DIR}/BUILD_INFO.h.in")
set(HEADER_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h")
set(BUILD_NUMBER 0)
set(BUILD_COMMIT "unknown")
# Look for git
find_package(Git)
if(NOT Git_FOUND)
execute_process(
COMMAND which git
OUTPUT_VARIABLE GIT_EXECUTABLE
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(NOT GIT_EXECUTABLE STREQUAL "")
set(Git_FOUND TRUE)
message(STATUS "Found Git using 'which': ${GIT_EXECUTABLE}")
else()
message(WARNING "Git not found using 'find_package' or 'which'. Build info will not be accurate. Consider installing Git or ensuring it is in the PATH.")
endif()
endif()
# Get the commit count and hash
if(Git_FOUND)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE HEAD
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE GIT_HEAD_RESULT
)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE COUNT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE GIT_COUNT_RESULT
)
if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0)
set(BUILD_COMMIT ${HEAD})
set(BUILD_NUMBER ${COUNT})
endif()
endif()
# Only write the header if it's changed to prevent unnecessary recompilation
if(EXISTS ${HEADER_FILE})
file(STRINGS ${HEADER_FILE} CONTENTS REGEX "BUILD_COMMIT \"([^\"]*)\"")
list(GET CONTENTS 0 EXISTING)
if(NOT EXISTING STREQUAL "#define BUILD_COMMIT \"${BUILD_COMMIT}\"")
configure_file(${TEMPLATE_FILE} ${HEADER_FILE})
endif()
else()
configure_file(${TEMPLATE_FILE} ${HEADER_FILE})
endif()

22
scripts/build-info.sh Executable file
View file

@ -0,0 +1,22 @@
#!/bin/sh
BUILD_NUMBER="0"
BUILD_COMMIT="unknown"
REV_LIST=$(git rev-list --count HEAD)
if [ $? -eq 0 ]; then
BUILD_NUMBER=$REV_LIST
fi
REV_PARSE=$(git rev-parse --short HEAD)
if [ $? -eq 0 ]; then
BUILD_COMMIT=$REV_PARSE
fi
echo "#ifndef BUILD_INFO_H"
echo "#define BUILD_INFO_H"
echo ""
echo "#define BUILD_NUMBER $BUILD_NUMBER"
echo "#define BUILD_COMMIT \"$BUILD_COMMIT\""
echo ""
echo "#endif // BUILD_INFO_H"