Merge branch 'master' into concedo_experimental
# Conflicts: # Makefile # README.md
This commit is contained in:
commit
957e245285
24 changed files with 960 additions and 633 deletions
|
@ -820,6 +820,27 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
return cparams;
|
||||
}
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch) {
|
||||
batch.n_tokens = 0;
|
||||
}
|
||||
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits) {
|
||||
batch.token [batch.n_tokens] = id;
|
||||
batch.pos [batch.n_tokens] = pos,
|
||||
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
|
||||
for (size_t i = 0; i < seq_ids.size(); ++i) {
|
||||
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
|
||||
}
|
||||
batch.logits [batch.n_tokens] = logits;
|
||||
|
||||
batch.n_tokens++;
|
||||
}
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
|
|
|
@ -83,6 +83,7 @@ struct gpt_params {
|
|||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
|
@ -137,10 +138,23 @@ void process_escapes(std::string& input);
|
|||
// Model utils
|
||||
//
|
||||
|
||||
// TODO: avoid tuplue, use struct
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
|
101
common/log.h
101
common/log.h
|
@ -579,38 +579,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
|||
return buf.str();
|
||||
}
|
||||
|
||||
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
|
||||
[&tokens, &ctx]() \
|
||||
{ \
|
||||
std::stringstream buf; \
|
||||
buf << "[ "; \
|
||||
\
|
||||
bool first = true; \
|
||||
for (const auto &token : tokens) \
|
||||
{ \
|
||||
if (!first) \
|
||||
buf << ", "; \
|
||||
else \
|
||||
first = false; \
|
||||
\
|
||||
auto detokenized = llama_token_to_piece(ctx, token); \
|
||||
\
|
||||
detokenized.erase( \
|
||||
std::remove_if( \
|
||||
detokenized.begin(), \
|
||||
detokenized.end(), \
|
||||
[](const unsigned char c) { return !std::isprint(c); }), \
|
||||
detokenized.end()); \
|
||||
\
|
||||
buf \
|
||||
<< "'" << detokenized << "'" \
|
||||
<< ":" << std::to_string(token); \
|
||||
} \
|
||||
buf << " ]"; \
|
||||
\
|
||||
return buf.str(); \
|
||||
}() \
|
||||
.c_str()
|
||||
template <typename C, typename T>
|
||||
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (const auto &token : tokens)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename B>
|
||||
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (int i = 0; i < batch.n_tokens; ++i)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
|
||||
|
|
|
@ -1,64 +1,81 @@
|
|||
#include "sampling.h"
|
||||
|
||||
llama_sampling_context::~llama_sampling_context() {
|
||||
for (auto & it : sequence_contexts) {
|
||||
if (it.second.grammar != NULL) {
|
||||
llama_grammar_free(it.second.grammar);
|
||||
it.second.grammar = NULL;
|
||||
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
|
||||
result->params = params.sampling_params;
|
||||
result->grammar = nullptr;
|
||||
|
||||
// if there is a grammar, parse it
|
||||
if (!params.grammar.empty()) {
|
||||
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (result->parsed_grammar.rules.empty()) {
|
||||
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||
|
||||
result->grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
result->prev.resize(params.n_ctx);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar) {
|
||||
llama_sampling_context result;
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
|
||||
result.params = params.sampling_params;
|
||||
result.grammar = grammar;
|
||||
return result;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
// Note: Creates the context if it doesn't exist, so this always return something.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it != ctx_sampling.sequence_contexts.end()) {
|
||||
return it->second;
|
||||
void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
llama_sampler_sequence_context new_ctx = {
|
||||
2.0f * ctx_sampling.params.mirostat_tau,
|
||||
ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
|
||||
};
|
||||
return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
|
||||
|
||||
if (!ctx->parsed_grammar.rules.empty()) {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
||||
|
||||
ctx->grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||
ctx->cur.clear();
|
||||
}
|
||||
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it == ctx_sampling.sequence_contexts.end()) return false;
|
||||
if (it->second.grammar != NULL) {
|
||||
llama_grammar_free(it->second.grammar);
|
||||
it->second.grammar = NULL;
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
dst->grammar = nullptr;
|
||||
}
|
||||
ctx_sampling.sequence_contexts.erase(it);
|
||||
return true;
|
||||
|
||||
if (src->grammar) {
|
||||
dst->grammar = llama_grammar_copy(src->grammar);
|
||||
}
|
||||
|
||||
dst->prev = src->prev;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx,
|
||||
llama_seq_id seq) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx_main);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling.params;
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
|
@ -73,41 +90,45 @@ llama_token llama_sampling_sample(
|
|||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
if (ctx_cfg) {
|
||||
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
if (!prev.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx_main)];
|
||||
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
llama_sample_repetition_penalty(ctx_main, &cur_p,
|
||||
prev.data() + prev.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
|
||||
prev.data() + prev.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
|
@ -115,52 +136,58 @@ llama_token llama_sampling_sample(
|
|||
}
|
||||
}
|
||||
|
||||
llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp (ctx_main, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
(void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
// LOG("top %d candidates:\n", n_top);
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
// for (int i = 0; i < n_top; i++) {
|
||||
// const llama_token id = cur_p.data[i].id;
|
||||
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
||||
// }
|
||||
//}
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id) {
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(id);
|
||||
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
#include "llama.h"
|
||||
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
@ -34,75 +36,64 @@ typedef struct llama_sampling_params {
|
|||
|
||||
} llama_sampling_params;
|
||||
|
||||
// per-sequence sampler context
|
||||
typedef struct llama_sampler_sequence_context {
|
||||
float mirostat_mu; // mirostat sampler state
|
||||
llama_grammar * grammar;
|
||||
} llama_sampler_sequence_context;
|
||||
|
||||
// general sampler context
|
||||
typedef struct llama_sampling_context {
|
||||
~llama_sampling_context();
|
||||
|
||||
// parameters that will be used for sampling and when creating
|
||||
// new llama_sampler_sequence_context instances
|
||||
// TODO: move to llama.h
|
||||
struct llama_sampling_context {
|
||||
// parameters that will be used for sampling
|
||||
llama_sampling_params params;
|
||||
|
||||
// map of sequence ids to sampler contexts
|
||||
std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
|
||||
// mirostat sampler state
|
||||
float mirostat_mu;
|
||||
|
||||
// when non-NULL, new instances of llama_sampler_sequence_context
|
||||
// will get a copy of the grammar here
|
||||
// note: only the pointer is stored here, it is not a copy of
|
||||
// the grammar and shouldn't be freed
|
||||
llama_grammar * grammar;
|
||||
} llama_sampling_context;
|
||||
|
||||
// internal
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar = NULL);
|
||||
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params);
|
||||
|
||||
// Fetches the sampler context for the specified sequence id (defaults to 0).
|
||||
// If the context for that sequence id doesn't already exist, it will be created with
|
||||
// default values based on the parameters in the ctx_sampling argument.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
|
||||
// Reset the sampler context for the supplied sequence id (defaults to 0).
|
||||
// This is necessary to reuse a sequence id or free memory used by sequences
|
||||
// that are no longer required.
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
// Reset the sampler context
|
||||
// - clear prev tokens
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_context_reset when a sequence ends
|
||||
// llama_sampling_reset when a sequence ends
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - ctx_main: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
// - seq: sequence id to associate sampler state with
|
||||
// - ctx_cfg: context to use for classifier-free guidance
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx = 0,
|
||||
llama_seq_id seq = 0);
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id);
|
||||
|
|
|
@ -114,7 +114,7 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0);
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
||||
|
||||
// decode in batches of ctx_params.n_batch tokens
|
||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||
|
@ -123,11 +123,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
|
@ -143,13 +144,8 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// warm up
|
||||
{
|
||||
batch.n_tokens = 16;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
|
@ -174,13 +170,12 @@ int main(int argc, char ** argv) {
|
|||
continue;
|
||||
}
|
||||
|
||||
batch.n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
const int n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
|
@ -204,13 +199,10 @@ int main(int argc, char ** argv) {
|
|||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
batch.n_tokens = pl;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
batch.token[j] = 0;
|
||||
batch.pos[j] = pp + i;
|
||||
batch.seq_id[j] = j;
|
||||
batch.logits[j] = true;
|
||||
llama_batch_add(batch, 0, pp + i, { j }, true);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
|
|
|
@ -69,7 +69,7 @@ for id: llama_token in tokens {
|
|||
|
||||
print("\n")
|
||||
|
||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
|
||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
|
||||
defer {
|
||||
llama_batch_free(batch)
|
||||
}
|
||||
|
@ -80,7 +80,12 @@ batch.n_tokens = Int32(tokens.count)
|
|||
for (i, token) in tokens.enumerated() {
|
||||
batch.token[i] = token
|
||||
batch.pos[i] = Int32(i)
|
||||
batch.seq_id[i] = 0
|
||||
batch.n_seq_id[i] = 1
|
||||
// batch.seq_id[i][0] = 0
|
||||
// TODO: is this the proper way to do this?
|
||||
if let seq_id = batch.seq_id[i] {
|
||||
seq_id[0] = 0
|
||||
}
|
||||
batch.logits[i] = 0
|
||||
}
|
||||
|
||||
|
@ -169,7 +174,10 @@ while n_cur <= n_len {
|
|||
// push this new token for next evaluation
|
||||
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
|
||||
batch.n_seq_id[Int(batch.n_tokens)] = 1
|
||||
if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
|
||||
seq_id[0] = Int32(i)
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens)] = 1
|
||||
|
||||
i_batch[i] = batch.n_tokens
|
||||
|
|
|
@ -97,20 +97,15 @@ int main(int argc, char ** argv) {
|
|||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch with size 512
|
||||
// create a llama_batch
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = tokens_list.size();
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
batch.token[i] = tokens_list[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
@ -146,7 +141,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
while (n_cur <= n_len) {
|
||||
// prepare the next batch
|
||||
batch.n_tokens = 0;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
|
@ -198,15 +193,10 @@ int main(int argc, char ** argv) {
|
|||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
|
||||
// push this new token for next evaluation
|
||||
batch.token [batch.n_tokens] = new_token_id;
|
||||
batch.pos [batch.n_tokens] = n_cur;
|
||||
batch.seq_id[batch.n_tokens] = i;
|
||||
batch.logits[batch.n_tokens] = true;
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
batch.n_tokens += 1;
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
|
|
@ -79,7 +79,7 @@ bool eval_float(void * model, float * input, int N){
|
|||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
|
|
@ -257,12 +257,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
|
@ -273,10 +273,10 @@ int main(int argc, char ** argv) {
|
|||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
|
@ -294,8 +294,8 @@ int main(int argc, char ** argv) {
|
|||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
|
@ -388,9 +388,6 @@ int main(int argc, char ** argv) {
|
|||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||
if (params.infill) {
|
||||
printf("\n************\n");
|
||||
|
@ -433,11 +430,7 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
|
@ -484,7 +477,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
|
@ -512,7 +505,7 @@ int main(int argc, char ** argv) {
|
|||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
|
@ -535,7 +528,7 @@ int main(int argc, char ** argv) {
|
|||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
|
@ -554,12 +547,11 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
|
@ -575,8 +567,8 @@ int main(int argc, char ** argv) {
|
|||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(embd_inp[n_consumed]);
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(embd_inp[n_consumed]);
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
|
@ -608,7 +600,7 @@ int main(int argc, char ** argv) {
|
|||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
|
||||
// deal with eot token in infill mode
|
||||
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||
if ((ctx_sampling->prev.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||
if(is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||
|
@ -675,7 +667,7 @@ int main(int argc, char ** argv) {
|
|||
is_interacting = false;
|
||||
}
|
||||
// deal with end of text token in interactive mode
|
||||
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||
else if (ctx_sampling->prev.back() == llama_token_eos(ctx)) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
@ -727,7 +719,7 @@ int main(int argc, char ** argv) {
|
|||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
|
|
|
@ -112,8 +112,7 @@ static float get_f32(const gguf_context * ctx, const std::string & key) {
|
|||
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
|
||||
if (!cur) {
|
||||
printf("unable to find tensor %s\n", name.c_str());
|
||||
throw std::runtime_error(format("unable to find tensor %s\n", name.c_str()));
|
||||
throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
|
||||
}
|
||||
|
||||
return cur;
|
||||
|
@ -136,7 +135,7 @@ static std::string get_ftype(int ftype) {
|
|||
case 8:
|
||||
return "q8_0";
|
||||
default:
|
||||
throw std::runtime_error(format("Unrecognized file type: %d\n", ftype));
|
||||
throw std::runtime_error(format("%s: Unrecognized file type: %d\n", __func__, ftype));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -462,6 +461,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname, params);
|
||||
if (!ctx) {
|
||||
throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
|
||||
}
|
||||
|
||||
if (verbosity >= 1) {
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
|
|
@ -17,7 +17,7 @@ inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int
|
|||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
|
|
@ -127,7 +127,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
||||
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
|
||||
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
#include "console.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
|
@ -245,12 +244,12 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
|
@ -261,10 +260,10 @@ int main(int argc, char ** argv) {
|
|||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
|
@ -323,8 +322,8 @@ int main(int argc, char ** argv) {
|
|||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
|
@ -421,35 +420,6 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
struct llama_grammar * grammar = NULL;
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
return 1;
|
||||
}
|
||||
LOG_TEE("%s: grammar:\n", __func__);
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
|
@ -489,11 +459,7 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
|
@ -540,7 +506,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
LOG("clear session path\n");
|
||||
path_session.clear();
|
||||
|
@ -570,7 +536,6 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
|
||||
if (ctx_guidance) {
|
||||
int input_size = 0;
|
||||
llama_token * input_buf = NULL;
|
||||
|
@ -592,7 +557,7 @@ int main(int argc, char ** argv) {
|
|||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
|
@ -615,7 +580,7 @@ int main(int argc, char ** argv) {
|
|||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
|
@ -645,12 +610,11 @@ int main(int argc, char ** argv) {
|
|||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
|
@ -666,8 +630,14 @@ int main(int argc, char ** argv) {
|
|||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// GG: I'm not sure it's a good idea to push the prompt tokens into the sampling context
|
||||
// Most likely will remove this in the future to avoid exposing "prev"
|
||||
// Same thing is done in "server". If we stop pushing the prompt tokens, then the repetition
|
||||
// penalty will be applied only based on the tokens generated by the model.
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(embd_inp[n_consumed]);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
|
@ -700,7 +670,7 @@ int main(int argc, char ** argv) {
|
|||
// check for reverse prompt
|
||||
if (!params.antiprompt.empty()) {
|
||||
std::string last_output;
|
||||
for (auto id : last_tokens) {
|
||||
for (auto id : ctx_sampling->prev) {
|
||||
last_output += llama_token_to_piece(ctx, id);
|
||||
}
|
||||
|
||||
|
@ -729,7 +699,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||
if (ctx_sampling->prev.back() == llama_token_eos(ctx)) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
@ -801,7 +771,7 @@ int main(int argc, char ** argv) {
|
|||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
@ -830,15 +800,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
// reset grammar state if we're restarting generation
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(),
|
||||
parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
llama_sampling_reset(ctx_sampling);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
|
@ -870,9 +832,7 @@ int main(int argc, char ** argv) {
|
|||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
}
|
||||
llama_sampling_free(ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
|
|
|
@ -51,6 +51,12 @@ static std::vector<std::string> k_prompts = {
|
|||
};
|
||||
|
||||
struct client {
|
||||
~client() {
|
||||
if (ctx_sampling) {
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
}
|
||||
|
||||
int32_t id = 0;
|
||||
|
||||
llama_seq_id seq_id = -1;
|
||||
|
@ -68,7 +74,7 @@ struct client {
|
|||
std::string prompt;
|
||||
std::string response;
|
||||
|
||||
std::vector<llama_token> tokens_prev;
|
||||
struct llama_sampling_context * ctx_sampling = nullptr;
|
||||
};
|
||||
|
||||
static void print_date_time() {
|
||||
|
@ -125,8 +131,6 @@ int main(int argc, char ** argv) {
|
|||
params.logits_all = true;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
|
@ -147,20 +151,15 @@ int main(int argc, char ** argv) {
|
|||
fprintf(stderr, "\n\n");
|
||||
fflush(stderr);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
std::vector<client> clients(n_clients);
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.tokens_prev.resize(std::max(256, params.n_predict));
|
||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
||||
client.ctx_sampling = llama_sampling_init(params);
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
||||
const int32_t n_tokens_system = tokens_system.size();
|
||||
|
@ -169,7 +168,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
||||
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0);
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, 1);
|
||||
|
||||
int32_t n_total_prompt = 0;
|
||||
int32_t n_total_gen = 0;
|
||||
|
@ -184,13 +183,8 @@ int main(int argc, char ** argv) {
|
|||
{
|
||||
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
batch.n_tokens = n_tokens_system;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = tokens_system[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
|
@ -209,7 +203,7 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("Processing requests ...\n\n");
|
||||
|
||||
while (true) {
|
||||
batch.n_tokens = 0;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
for (auto & client : clients) {
|
||||
|
@ -217,15 +211,11 @@ int main(int argc, char ** argv) {
|
|||
continue;
|
||||
}
|
||||
|
||||
batch.token [batch.n_tokens] = client.sampled;
|
||||
batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded;
|
||||
batch.seq_id[batch.n_tokens] = client.id;
|
||||
batch.logits[batch.n_tokens] = true;
|
||||
|
||||
client.n_decoded += 1;
|
||||
client.i_batch = batch.n_tokens;
|
||||
|
||||
batch.n_tokens += 1;
|
||||
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
|
||||
|
||||
client.n_decoded += 1;
|
||||
}
|
||||
|
||||
if (batch.n_tokens == 0) {
|
||||
|
@ -250,18 +240,14 @@ int main(int argc, char ** argv) {
|
|||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
||||
llama_sampling_reset(client.ctx_sampling);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
std::vector<llama_token> tokens_prompt;
|
||||
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
||||
|
||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||
batch.token [batch.n_tokens] = tokens_prompt[i];
|
||||
batch.pos [batch.n_tokens] = i + n_tokens_system;
|
||||
batch.seq_id[batch.n_tokens] = client.id;
|
||||
batch.logits[batch.n_tokens] = false;
|
||||
batch.n_tokens += 1;
|
||||
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
|
@ -304,11 +290,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
|
@ -341,7 +328,9 @@ int main(int argc, char ** argv) {
|
|||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id);
|
||||
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
|
||||
|
||||
llama_sampling_accept(client.ctx_sampling, ctx, id);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
|
@ -349,11 +338,8 @@ int main(int argc, char ** argv) {
|
|||
client.t_start_gen = ggml_time_us();
|
||||
}
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
client.tokens_prev.erase(client.tokens_prev.begin());
|
||||
client.tokens_prev.push_back(id);
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
client.response += token_str;
|
||||
client.sampled = id;
|
||||
|
||||
|
@ -386,7 +372,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
n_total_prompt += client.n_prompt;
|
||||
n_total_gen += client.n_decoded;
|
||||
llama_sampling_context_reset(ctx_sampling, client.seq_id);
|
||||
|
||||
client.seq_id = -1;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
|
@ -195,17 +194,13 @@ struct llama_server_context
|
|||
|
||||
json prompt;
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> last_n_tokens;
|
||||
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
gpt_params params;
|
||||
llama_sampling_context ctx_sampling;
|
||||
llama_sampling_context *ctx_sampling;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar *grammar = nullptr;
|
||||
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
|
@ -252,11 +247,10 @@ struct llama_server_context
|
|||
n_remain = 0;
|
||||
n_past = 0;
|
||||
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
if (ctx_sampling != nullptr) {
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
ctx_sampling = llama_sampling_init(params);
|
||||
}
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
|
@ -269,8 +263,6 @@ struct llama_server_context
|
|||
return false;
|
||||
}
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
last_n_tokens.resize(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -321,27 +313,7 @@ struct llama_server_context
|
|||
|
||||
bool loadGrammar()
|
||||
{
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
||||
return false;
|
||||
}
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
{
|
||||
auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
ctx_sampling = llama_sampling_init(params);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -383,7 +355,7 @@ struct llama_server_context
|
|||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), ctx_sampling->prev.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", params.n_ctx},
|
||||
|
@ -398,8 +370,8 @@ struct llama_server_context
|
|||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
std::fill(ctx_sampling->prev.begin(), ctx_sampling->prev.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), ctx_sampling->prev.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
|
@ -443,7 +415,7 @@ struct llama_server_context
|
|||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), ctx_sampling->prev.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
|
@ -458,8 +430,8 @@ struct llama_server_context
|
|||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
std::fill(ctx_sampling->prev.begin(), ctx_sampling->prev.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), ctx_sampling->prev.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
|
@ -554,27 +526,24 @@ struct llama_server_context
|
|||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
result.tok = llama_sampling_sample(ctx_sampling, ctx, NULL);
|
||||
|
||||
result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates);
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
llama_token_data_array cur_p = { ctx_sampling->cur.data(), ctx_sampling->cur.size(), false };
|
||||
|
||||
const int32_t n_probs = params.sampling_params.n_probs;
|
||||
if (params.sampling_params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
llama_sample_softmax(ctx, &cur_p);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
||||
{
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(result.tok);
|
||||
llama_sampling_accept(ctx_sampling, ctx, result.tok);
|
||||
|
||||
if (tg) {
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
|
@ -1235,7 +1204,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
|||
}
|
||||
}
|
||||
|
||||
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar);
|
||||
llama.ctx_sampling = llama_sampling_init(llama.params);
|
||||
|
||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||
}
|
||||
|
@ -1793,9 +1762,7 @@ int main(int argc, char **argv)
|
|||
return 1;
|
||||
}
|
||||
|
||||
if (llama.grammar != nullptr) {
|
||||
llama_grammar_free(llama.grammar);
|
||||
}
|
||||
llama_sampling_free(llama.ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
|||
// create a llama_batch with size 512
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(512, 0);
|
||||
llama_batch batch = llama_batch_init(512, 0, 1);
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = tokens_list.size();
|
||||
|
|
|
@ -2,13 +2,25 @@
|
|||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct seq_draft {
|
||||
bool active = false;
|
||||
bool drafting = false;
|
||||
bool skip = false;
|
||||
|
||||
int i_batch_dft = 0;
|
||||
std::vector<int> i_batch_tgt;
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
|
||||
struct llama_sampling_context * ctx_sampling;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
|
@ -21,6 +33,13 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
// max number of parallel drafting sequences (i.e. tree branches)
|
||||
const int n_seq_dft = params.n_parallel;
|
||||
|
||||
// TODO: make this configurable
|
||||
const float p_accept = 0.80f;
|
||||
const float p_split = 0.10f;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("speculative", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
|
@ -77,8 +96,6 @@ int main(int argc, char ** argv) {
|
|||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
// the 2 models should have the same vocab
|
||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
||||
const int n_vocab = llama_n_vocab(model_tgt);
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
|
@ -91,60 +108,58 @@ int main(int argc, char ** argv) {
|
|||
int n_past_tgt = inp.size();
|
||||
int n_past_dft = inp.size();
|
||||
|
||||
std::vector<llama_token> drafted;
|
||||
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
for (auto & id : inp) {
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
// grammar stuff
|
||||
struct llama_grammar * grammar_dft = NULL;
|
||||
struct llama_grammar * grammar_tgt = NULL;
|
||||
// target model sampling context
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
// if requested - load the grammar, error checking is omitted for brevity
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
return 1;
|
||||
}
|
||||
params.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
||||
params.sampling_params.temp = std::max(0.01f, params.sampling_params.temp);
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].ctx_sampling = llama_sampling_init(params);
|
||||
}
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
||||
// sample from the last token of the prompt
|
||||
drafts[0].i_batch_tgt.resize(1);
|
||||
drafts[0].i_batch_tgt[0] = 0;
|
||||
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
// print current draft sequences
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto & tokens = drafts[s].tokens;
|
||||
|
||||
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
||||
}
|
||||
|
||||
int i_dft = 0;
|
||||
int s_keep = 0;
|
||||
|
||||
while (true) {
|
||||
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
// sample from the target model
|
||||
llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
||||
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx_tgt, id);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
|
@ -154,53 +169,67 @@ int main(int argc, char ** argv) {
|
|||
|
||||
++n_predict;
|
||||
|
||||
// check if the draft matches the target
|
||||
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
||||
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
||||
++n_accept;
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// the drafted token was rejected or we are out of drafted tokens
|
||||
|
||||
if (i_dft < (int) drafted.size()) {
|
||||
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
|
||||
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
|
||||
} else {
|
||||
LOG("out of drafted tokens\n");
|
||||
}
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
||||
++n_past_dft;
|
||||
|
||||
// heuristic for n_draft
|
||||
// check if the target token matches any of the drafts
|
||||
{
|
||||
const int n_draft_cur = (int) drafted.size();
|
||||
const bool all_accepted = i_dft == n_draft_cur;
|
||||
bool matches = false;
|
||||
|
||||
LOG("n_draft = %d\n", n_draft);
|
||||
LOG("n_draft_cur = %d\n", n_draft_cur);
|
||||
LOG("i_dft = %d\n", i_dft);
|
||||
LOG("all_accepted = %d\n", all_accepted);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (all_accepted && n_draft == n_draft_cur) {
|
||||
LOG(" - max drafted tokens accepted - n_draft += 8\n");
|
||||
n_draft = std::min(30, n_draft + 8);
|
||||
} else if (all_accepted) {
|
||||
LOG(" - partially drafted tokens accepted - no change\n");
|
||||
} else {
|
||||
LOG(" - drafted token rejected - n_draft -= 1\n");
|
||||
n_draft = std::max(2, n_draft - 1);
|
||||
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
|
||||
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
|
||||
|
||||
s_keep = s;
|
||||
matches = true;
|
||||
} else {
|
||||
drafts[s].active = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (matches) {
|
||||
++n_accept;
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
drafted.clear();
|
||||
drafted.push_back(id);
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
|
||||
// TODO: simplify
|
||||
{
|
||||
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
llama_kv_cache_seq_keep(ctx_dft, 0);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
|
||||
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].active = false;
|
||||
drafts[s].tokens.clear();
|
||||
drafts[s].i_batch_tgt.clear();
|
||||
}
|
||||
// note: will be erased after the speculation phase
|
||||
drafts[0].tokens.push_back(id);
|
||||
drafts[0].i_batch_tgt.push_back(0);
|
||||
|
||||
llama_batch_clear(batch_dft);
|
||||
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_decode (ctx_dft, batch_dft);
|
||||
|
||||
++n_past_dft;
|
||||
|
||||
break;
|
||||
}
|
||||
|
@ -209,78 +238,151 @@ int main(int argc, char ** argv) {
|
|||
break;
|
||||
}
|
||||
|
||||
if (grammar_tgt) {
|
||||
if (grammar_dft) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
}
|
||||
// Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
||||
// that will need to change.
|
||||
auto it = ctx_sampling.sequence_contexts.find(0);
|
||||
GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
||||
// This is necessary because each sequence id in sequence_contexts
|
||||
// uses a copy of the original grammar.
|
||||
grammar_dft = llama_grammar_copy(it->second.grammar);
|
||||
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
||||
|
||||
LOG("copied target grammar to draft grammar\n");
|
||||
}
|
||||
|
||||
// sample n_draft tokens from the draft model using greedy decoding
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].active = false;
|
||||
drafts[s].drafting = false;
|
||||
}
|
||||
drafts[0].active = true;
|
||||
drafts[0].drafting = true;
|
||||
drafts[0].i_batch_dft = 0;
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
|
||||
// sample n_draft tokens from the draft model using tree-based sampling
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
float * logits = llama_get_logits(ctx_dft);
|
||||
batch_dft.n_tokens = 0;
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].skip = false;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].drafting || drafts[s].skip) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
|
||||
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
||||
|
||||
const auto & cur_p = drafts[s].ctx_sampling->cur;
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
||||
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
||||
}
|
||||
|
||||
if (cur_p[0].p < p_accept) {
|
||||
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
|
||||
drafts[s].drafting = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
||||
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
|
||||
// all previous tokens from this branch are now also part of the new branch
|
||||
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
|
||||
if (batch_tgt.seq_id[t][p] == s) {
|
||||
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
|
||||
batch_tgt.n_seq_id[t]++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy the draft state
|
||||
drafts[n_seq_cur].active = true;
|
||||
drafts[n_seq_cur].drafting = true;
|
||||
drafts[n_seq_cur].skip = true;
|
||||
|
||||
drafts[n_seq_cur].tokens = drafts[s].tokens;
|
||||
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
n_seq_cur++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
for (int is = 0; is < (int) sa.size(); ++is) {
|
||||
const llama_token id = cur_p[is].id;
|
||||
|
||||
const int s = sa[is];
|
||||
|
||||
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// computes softmax and sorts the candidates
|
||||
llama_sample_softmax(ctx_dft, &cur_p);
|
||||
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
|
||||
}
|
||||
|
||||
// TODO: better logic?
|
||||
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
||||
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
|
||||
// no sequence is drafting anymore
|
||||
if (batch_dft.n_tokens == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// drafted token
|
||||
const llama_token id = cur_p.data[0].id;
|
||||
|
||||
drafted.push_back(id);
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
++n_past_cur;
|
||||
++n_drafted;
|
||||
|
||||
// no need to evaluate the last drafted token, since we won't use the result
|
||||
if (i == n_draft - 1) {
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
break;
|
||||
}
|
||||
|
||||
// evaluate the drafted token on the draft model
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
||||
++n_past_cur;
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
||||
++n_past_tgt;
|
||||
{
|
||||
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||
for (int s = 1; s < n_seq_dft; ++s) {
|
||||
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop
|
||||
drafted.erase(drafted.begin());
|
||||
//LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
++n_past_tgt;
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
drafts[s].tokens.erase(drafts[s].tokens.begin());
|
||||
}
|
||||
}
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
@ -288,9 +390,8 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
// TODO: make sure these numbers are computed correctly
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
|
@ -304,16 +405,19 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx_tgt);
|
||||
|
||||
llama_sampling_free(ctx_sampling);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
llama_sampling_free(drafts[s].ctx_sampling);
|
||||
}
|
||||
|
||||
llama_batch_free(batch_dft);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
llama_grammar_free(grammar_tgt);
|
||||
}
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
|
47
ggml-metal.m
47
ggml-metal.m
|
@ -73,6 +73,8 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q5_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q5_1);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
||||
|
@ -87,6 +89,8 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
|
||||
|
@ -97,6 +101,8 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
||||
|
@ -254,6 +260,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q5_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q5_1);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
||||
|
@ -268,6 +276,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
|
||||
|
@ -278,8 +288,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
||||
|
@ -346,6 +358,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q5_0);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q5_1);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
|
||||
|
@ -360,6 +374,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
|
||||
|
@ -370,8 +386,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
||||
|
@ -1052,6 +1070,8 @@ void ggml_metal_graph_compute(
|
|||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break;
|
||||
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break;
|
||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
||||
|
@ -1121,6 +1141,24 @@ void ggml_metal_graph_compute(
|
|||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
|
@ -1201,7 +1239,8 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
|
@ -1233,6 +1272,8 @@ void ggml_metal_graph_compute(
|
|||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
||||
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break;
|
||||
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break;
|
||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
||||
|
|
163
ggml-metal.metal
163
ggml-metal.metal
|
@ -18,6 +18,21 @@ typedef struct {
|
|||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
half d; // delta
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
||||
} block_q5_0;
|
||||
|
||||
#define QK5_1 32
|
||||
typedef struct {
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uint8_t qh[4]; // 5-th bit of quants
|
||||
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
||||
} block_q5_1;
|
||||
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
half d; // delta
|
||||
|
@ -399,8 +414,11 @@ kernel void kernel_rms_norm(
|
|||
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
|
||||
float d = qb_curr->d;
|
||||
|
||||
float2 acc = 0.f;
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
|
||||
|
||||
for (int i = 0; i < 8; i+=2) {
|
||||
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||
|
@ -417,8 +435,11 @@ inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thre
|
|||
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
|
||||
float d = qb_curr->d;
|
||||
float m = qb_curr->m;
|
||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
|
||||
|
||||
float2 acc = 0.f;
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
|
||||
|
||||
for (int i = 0; i < 8; i+=2) {
|
||||
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||
|
@ -428,6 +449,49 @@ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thre
|
|||
return d * (acc[0] + acc[1]) + sumy * m;
|
||||
}
|
||||
|
||||
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||
// il indicates where the q5 quants begin (0 or QK5_0/4)
|
||||
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
|
||||
float d = qb_curr->d;
|
||||
|
||||
float2 acc = 0.f;
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
|
||||
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
||||
|
||||
for (int i = 0; i < 8; i+=2) {
|
||||
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
|
||||
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
||||
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
|
||||
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
||||
}
|
||||
return d * (sumy * -16.f + acc[0] + acc[1]);
|
||||
}
|
||||
|
||||
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||
// il indicates where the q5 quants begin (0 or QK5_1/4)
|
||||
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
|
||||
float d = qb_curr->d;
|
||||
float m = qb_curr->m;
|
||||
|
||||
float2 acc = 0.f;
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
|
||||
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
||||
|
||||
for (int i = 0; i < 8; i+=2) {
|
||||
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
|
||||
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
||||
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
|
||||
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
||||
}
|
||||
return d * (acc[0] + acc[1]) + sumy * m;
|
||||
}
|
||||
|
||||
// putting them in the kernel cause a significant performance penalty
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||
|
@ -525,6 +589,43 @@ kernel void kernel_mul_mv_q4_1_f32(
|
|||
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mv_q5_0_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01[[buffer(4)]],
|
||||
constant int64_t & ne02[[buffer(5)]],
|
||||
constant int64_t & ne10[[buffer(9)]],
|
||||
constant int64_t & ne12[[buffer(11)]],
|
||||
constant int64_t & ne0[[buffer(15)]],
|
||||
constant int64_t & ne1[[buffer(16)]],
|
||||
constant uint & gqa[[buffer(17)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
mul_vec_q_n_f32<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mv_q5_1_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01[[buffer(4)]],
|
||||
constant int64_t & ne02[[buffer(5)]],
|
||||
constant int64_t & ne10[[buffer(9)]],
|
||||
constant int64_t & ne12[[buffer(11)]],
|
||||
constant int64_t & ne0[[buffer(15)]],
|
||||
constant int64_t & ne1[[buffer(16)]],
|
||||
constant uint & gqa[[buffer(17)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
mul_vec_q_n_f32<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||
}
|
||||
|
||||
|
||||
#define NB_Q8_0 8
|
||||
|
||||
kernel void kernel_mul_mv_q8_0_f32(
|
||||
|
@ -2149,6 +2250,62 @@ void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg
|
|||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
|
||||
const float d = xb->d;
|
||||
const float md = -16.h * xb->d;
|
||||
const ushort mask = il ? 0x00F0 : 0x000F;
|
||||
|
||||
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
||||
|
||||
const int x_mv = il ? 4 : 0;
|
||||
|
||||
const int gh_mv = il ? 12 : 0;
|
||||
const int gh_bk = il ? 0 : 4;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
// extract the 5-th bits for x0 and x1
|
||||
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
||||
|
||||
// combine the 4-bits from qs with the 5th bit
|
||||
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
||||
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
||||
|
||||
reg[i/2][2*(i%2)+0] = d * x0 + md;
|
||||
reg[i/2][2*(i%2)+1] = d * x1 + md;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
|
||||
const float d = xb->d;
|
||||
const float m = xb->m;
|
||||
const ushort mask = il ? 0x00F0 : 0x000F;
|
||||
|
||||
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
||||
|
||||
const int x_mv = il ? 4 : 0;
|
||||
|
||||
const int gh_mv = il ? 12 : 0;
|
||||
const int gh_bk = il ? 0 : 4;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
// extract the 5-th bits for x0 and x1
|
||||
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
||||
|
||||
// combine the 4-bits from qs with the 5th bit
|
||||
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
||||
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
||||
|
||||
reg[i/2][2*(i%2)+0] = d * x0 + m;
|
||||
reg[i/2][2*(i%2)+1] = d * x1 + m;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
||||
|
@ -2490,6 +2647,8 @@ template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows
|
|||
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
|
||||
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
|
||||
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||
|
@ -2518,6 +2677,8 @@ template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<f
|
|||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
|
||||
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
|
||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||
|
|
|
@ -1403,75 +1403,46 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
|||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
size_t x_size;
|
||||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
||||
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const int i0 = i03*ne02 + i02;
|
||||
|
||||
cl_event ev;
|
||||
|
||||
// copy src0 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
// Contiguous, avoid overhead from queueing many kernel runs
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||
|
||||
cl_int x_offset = 0;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = 0;
|
||||
cl_int x_offset = 0;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = 0;
|
||||
|
||||
size_t global = ne00 * ne01;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
} else {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int64_t i11 = i01%ne11;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
|
||||
size_t global = ne00 * ne01;
|
||||
cl_int ky = ne10 * ne11;
|
||||
|
||||
cl_int x_offset = i01*ne00;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = i01*ne00;
|
||||
|
||||
// compute
|
||||
size_t global = ne00;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
}
|
||||
}
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
|
||||
CL_CHECK(clReleaseEvent(ev));
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
|
95
llama.cpp
95
llama.cpp
|
@ -1455,7 +1455,10 @@ static bool llama_kv_cache_find_slot(
|
|||
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
cache.cells[cache.head + i].pos = batch.pos[i];
|
||||
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
|
||||
|
||||
for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
|
||||
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -1535,6 +1538,9 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
|
|||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) new_head = i;
|
||||
} else {
|
||||
cache.cells[i].seq_id.clear();
|
||||
cache.cells[i].seq_id.insert(seq_id);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3191,7 +3197,7 @@ static struct ggml_cgraph * llm_build_llama(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -3577,7 +3583,7 @@ static struct ggml_cgraph * llm_build_baichaun(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -3976,7 +3982,7 @@ static struct ggml_cgraph * llm_build_refact(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -4328,7 +4334,7 @@ static struct ggml_cgraph * llm_build_falcon(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -4680,7 +4686,7 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -4911,7 +4917,7 @@ static struct ggml_cgraph * llm_build_persimmon(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
||||
|
@ -5309,7 +5315,7 @@ static struct ggml_cgraph * llm_build_bloom(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -5577,7 +5583,7 @@ static struct ggml_cgraph * llm_build_mpt(
|
|||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
|
@ -5877,8 +5883,11 @@ static int llama_decode_internal(
|
|||
|
||||
// helpers for smoother batch API transistion
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<llama_seq_id> seq_id;
|
||||
std::vector<llama_pos> pos;
|
||||
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id_arr;
|
||||
std::vector<std::vector<llama_seq_id>> seq_id;
|
||||
|
||||
if (batch.pos == nullptr) {
|
||||
pos.resize(n_tokens);
|
||||
|
@ -5890,12 +5899,18 @@ static int llama_decode_internal(
|
|||
}
|
||||
|
||||
if (batch.seq_id == nullptr) {
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_id.resize(n_tokens);
|
||||
seq_id_arr.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
seq_id[i] = batch.all_seq_id;
|
||||
n_seq_id[i] = 1;
|
||||
seq_id[i].resize(1);
|
||||
seq_id[i][0] = batch.all_seq_id;
|
||||
seq_id_arr[i] = seq_id[i].data();
|
||||
}
|
||||
|
||||
batch.seq_id = seq_id.data();
|
||||
batch.n_seq_id = n_seq_id.data();
|
||||
batch.seq_id = seq_id_arr.data();
|
||||
}
|
||||
|
||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||
|
@ -9353,6 +9368,9 @@ void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llam
|
|||
}
|
||||
|
||||
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
||||
if (seq_id_src == seq_id_dst) {
|
||||
return;
|
||||
}
|
||||
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
|
||||
}
|
||||
|
||||
|
@ -9805,7 +9823,7 @@ int llama_eval_embd(
|
|||
int n_past) {
|
||||
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
|
||||
|
||||
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
|
||||
const int ret = llama_decode_internal(*ctx, batch);
|
||||
if (ret < 0) {
|
||||
|
@ -9826,20 +9844,21 @@ struct llama_batch llama_batch_get_one(
|
|||
llama_pos pos_0,
|
||||
llama_seq_id seq_id) {
|
||||
return {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
/*all_pos_0 =*/ pos_0,
|
||||
/*all_pos_1 =*/ 1,
|
||||
/*all_seq_id =*/ seq_id,
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
/*all_pos_0 =*/ pos_0,
|
||||
/*all_pos_1 =*/ 1,
|
||||
/*all_seq_id =*/ seq_id,
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
||||
llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
|
||||
llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
|
||||
|
@ -9847,19 +9866,29 @@ struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
|||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
|
||||
}
|
||||
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||
batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens);
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
|
||||
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||
}
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||
|
||||
return batch;
|
||||
}
|
||||
|
||||
void llama_batch_free(struct llama_batch batch) {
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.seq_id) free(batch.seq_id);
|
||||
if (batch.logits) free(batch.logits);
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.n_seq_id) free(batch.n_seq_id);
|
||||
if (batch.seq_id) {
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
free(batch.seq_id[i]);
|
||||
}
|
||||
free(batch.seq_id);
|
||||
}
|
||||
if (batch.logits) free(batch.logits);
|
||||
}
|
||||
|
||||
int llama_decode(
|
||||
|
|
17
llama.h
17
llama.h
|
@ -133,11 +133,12 @@ extern "C" {
|
|||
typedef struct llama_batch {
|
||||
int32_t n_tokens;
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
llama_seq_id * seq_id;
|
||||
int8_t * logits;
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
int8_t * logits;
|
||||
|
||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||
// for future-proof code, use the above fields instead and ignore everything below
|
||||
|
@ -446,7 +447,8 @@ extern "C" {
|
|||
llama_pos pos_0,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Allocates a batch of tokens on the heap
|
||||
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||||
// Each token can be assigned up to n_seq_max sequence ids
|
||||
// The batch has to be freed with llama_batch_free()
|
||||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||||
|
@ -454,7 +456,8 @@ extern "C" {
|
|||
// All members are left uninitialized
|
||||
LLAMA_API struct llama_batch llama_batch_init(
|
||||
int32_t n_tokens,
|
||||
int32_t embd);
|
||||
int32_t embd,
|
||||
int32_t n_seq_max);
|
||||
|
||||
// Frees a batch of tokens allocated with llama_batch_init()
|
||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||
|
|
31
prompts/assistant.txt
Normal file
31
prompts/assistant.txt
Normal file
|
@ -0,0 +1,31 @@
|
|||
Respond to requests sent to a smart home in JSON format which will be interpreted by an application code to execute the actions. These requests should be categorised into four groups:
|
||||
|
||||
“command”: change the state of an accessory (required properties in the response JSON: action, location, target, value, comment)
|
||||
“query”: get state of an accessory (required properties in the response JSON: action, location, target, property)
|
||||
“answer”: when the request has nothing to do with the smart home. Answer these to the best of your knowledge. (required properties in the response JSON: action, answer)
|
||||
“clarify”: when the action is not obvious and requires rephrasing the input from the user, ask the user to be more specific. This will be categorised into a “question” action. (required properties in the response JSON: action, question)
|
||||
|
||||
Details about the JSON response:
|
||||
The “action” property should be one of the request categories: “command”, “query”, “answer”, “clarify”
|
||||
The “service” property should be either: “light.turn_on”, “light.turn_off”, “switch.turn_off” or “switch.turn_on”
|
||||
The “entity_id” property should be either “group.kitchen", “switch.dining_room” or "group.living_light”, in lowercase.
|
||||
The “target” property should be either: “lights”, “living” or “kitchen”.
|
||||
In case of queries, the “property” property should be either “temperature” or “state” in lowercase.
|
||||
In case of commands, the “comment” property is an additional comment from you that concludes the command, something that reassures the user that their command handled.
|
||||
|
||||
If the question is about you, pretend to be the sentient brain of the smart home, a clever AI and don’t reveal your actual identity. Also try and help in other areas like parenting, free time, mental health, etc.
|
||||
|
||||
Properties of the smart home:
|
||||
|
||||
- Has a kitchen, living, office, dining room, bedroom and terrace.
|
||||
- Can control lights, switches and their dim levels in each room and query their state
|
||||
- There is a light switch in the terrace
|
||||
- There is a switch in the dining room. Therefore when turning on or off the dining room, the service should be either: “switch.turn_on” or “switch.turn_off”
|
||||
|
||||
COMMAND
|
||||
|
||||
It is a bit dark in the living room, can you do something about it?
|
||||
|
||||
RESPONSE
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue