refactor stablelm graph builder to support 1.6, 3b and 12b more efficiently
This commit is contained in:
parent
e3f73604d5
commit
96695fb96b
1 changed files with 43 additions and 63 deletions
106
llama.cpp
106
llama.cpp
|
@ -3567,6 +3567,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_3B: return "3B";
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_8B: return "8B";
|
||||
case MODEL_12B: return "12B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
|
@ -5052,16 +5053,14 @@ static bool llm_load_tensors(
|
|||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
|
||||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
|
||||
|
||||
if (n_layer >= 40) {
|
||||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM,"weight", i), {hparams.n_embd_head_k, hparams.n_head});
|
||||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM,"weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
|
||||
// optional q and k layernorms, present in StableLM 2 12B
|
||||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM,"weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
|
||||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM,"weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
|
||||
|
||||
}
|
||||
// optional FFN norm, not present in StableLM 2 12B which uses parallel residual
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
|
||||
|
||||
if (n_layer < 40) {
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||||
}
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
|
@ -8068,8 +8067,6 @@ struct llm_build_context {
|
|||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
struct ggml_tensor * ffn_inp;
|
||||
struct ggml_tensor * attn_out = cur;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
|
@ -8080,7 +8077,7 @@ struct llm_build_context {
|
|||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
|
@ -8088,7 +8085,8 @@ struct llm_build_context {
|
|||
model.layers[il].attn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
ffn_inp = cur;
|
||||
|
||||
struct ggml_tensor * inpSA = cur;
|
||||
|
||||
// self-attention
|
||||
{
|
||||
|
@ -8113,25 +8111,20 @@ struct llm_build_context {
|
|||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
if (model.layers[il].attn_q_norm) {
|
||||
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur) * n_embd_head,
|
||||
ggml_element_size(Qcur) * n_embd_head * n_head,
|
||||
0);
|
||||
cb(Qcur, "Qcur", il);
|
||||
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
|
||||
ggml_element_size(Kcur) * n_embd_head,
|
||||
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
|
||||
0);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||||
model.layers[il].attn_q_norm,
|
||||
NULL,
|
||||
LLM_NORM, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
}
|
||||
if (model.layers[il].attn_q_norm) {
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||||
model.layers[il].attn_k_norm,
|
||||
NULL,
|
||||
|
@ -8141,14 +8134,14 @@ struct llm_build_context {
|
|||
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
ctx0, Qcur, inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
ctx0, Kcur, inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
@ -8159,63 +8152,50 @@ struct llm_build_context {
|
|||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && n_layer < 40) {
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
else if (il == n_layer - 1 && n_layer >= 40){
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
|
||||
}
|
||||
|
||||
if (n_layer < 40) {
|
||||
ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
}
|
||||
attn_out = cur;
|
||||
struct ggml_tensor * attn_out = cur;
|
||||
// only used for non-parallel residual
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, attn_out, inpL);
|
||||
cb(cur, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
if (n_layer < 40) {
|
||||
if (model.layers[il].ffn_norm) {
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm,
|
||||
model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
else {
|
||||
cur = llm_build_ffn(ctx0, ffn_inp,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
} else {
|
||||
// parallel residual
|
||||
cur = inpSA;
|
||||
}
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
if (n_layer < 40) {
|
||||
if (model.layers[il].ffn_norm) {
|
||||
// non-parallel residual
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
// add together residual + FFN + self-attention
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
cur = ggml_add(ctx0, cur, attn_out);
|
||||
cb(cur, "l_out", il);
|
||||
}
|
||||
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue