fix get rows backward pass

This commit is contained in:
xaedes 2023-04-28 20:31:36 +02:00
parent 7281f60572
commit 96e773bbde
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
2 changed files with 92 additions and 49 deletions

138
ggml.c
View file

@ -6156,8 +6156,10 @@ struct ggml_tensor * ggml_get_rows(
struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
bool is_node = false;
@ -6167,12 +6169,13 @@ struct ggml_tensor * ggml_get_rows_back(
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
result->op = GGML_OP_GET_ROWS_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = b;
result->opt[0] = c;
return result;
}
@ -10374,8 +10377,7 @@ static void ggml_compute_forward_get_rows_q(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
bool backward) {
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10391,15 +10393,12 @@ static void ggml_compute_forward_get_rows_q(
assert( dst->ne[1] == nr);
assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
dequantize_row_q(
(const void *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]),
(float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]), nc);
(const void *) ((char *) src0->data + r*src0->nb[1]),
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
}
}
@ -10407,8 +10406,7 @@ static void ggml_compute_forward_get_rows_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
bool backward) {
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10422,15 +10420,12 @@ static void ggml_compute_forward_get_rows_f16(
assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(ggml_fp16_t));
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]))[j];
((float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
}
}
}
@ -10439,8 +10434,7 @@ static void ggml_compute_forward_get_rows_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
bool backward) {
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10454,15 +10448,12 @@ static void ggml_compute_forward_get_rows_f32(
assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(float));
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]),
(float *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]));
(float *) ((char *) dst->data + i*dst->nb[1]),
(float *) ((char *) src0->data + r*src0->nb[1]));
}
}
@ -10480,15 +10471,15 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
{
ggml_compute_forward_get_rows_q(params, src0, src1, dst, false);
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, src0, src1, dst, false);
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_f32(params, src0, src1, dst, false);
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
} break;
default:
{
@ -10517,27 +10508,87 @@ static void ggml_compute_forward_get_rows(
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back_f32_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) src0->data + i*src0->nb[1]));
}
}
static void ggml_compute_forward_get_rows_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q8_0:
{
ggml_compute_forward_get_rows_q(params, src0, src1, dst, true);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, src0, src1, dst, true);
ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_f32(params, src0, src1, dst, true);
ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
} break;
default:
{
@ -12814,7 +12865,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_GET_ROWS_BACK:
{
ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor);
ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
} break;
case GGML_OP_DIAG:
{
@ -13275,7 +13326,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_get_rows_back(ctx, tensor->grad, src1),
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
inplace);
}
if (src1->grad) {
@ -13284,16 +13335,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
} break;
case GGML_OP_GET_ROWS_BACK:
{
// necessary for llama (only for tokenizer)
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_get_rows(ctx, tensor->grad, src1),
inplace);
}
if (src1->grad) {
// noop
}
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG:
{

3
ggml.h
View file

@ -699,7 +699,8 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
struct ggml_tensor * c);
GGML_API struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,