Refactor lora adapter support (#8332)

* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
This commit is contained in:
Xuan Son Nguyen 2024-07-15 20:50:47 +02:00 committed by GitHub
parent 4db8f60fe7
commit 97bdd26eee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 963 additions and 530 deletions

View file

@ -43,7 +43,7 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.
osize *= dim
out = np.empty(shape=osize, dtype=otype)
# compute over groups of 16 rows (arbitrary, but seems good for performance)
n_groups = rows.shape[0] // 16
n_groups = (rows.shape[0] // 16) or 1
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
return out.reshape(oshape)