kv/ti data are still wrong
This commit is contained in:
parent
03cc9bcbe8
commit
97dd416903
4 changed files with 229 additions and 310 deletions
|
@ -59,7 +59,7 @@ class Model:
|
|||
tensor_map: gguf.TensorNameMap
|
||||
tensor_names: set[str] | None
|
||||
fname_out: Path
|
||||
gguf_writer: gguf.GGUFWriterSplit
|
||||
gguf_writer: gguf.GGUFWriter
|
||||
|
||||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
|
@ -95,8 +95,8 @@ class Model:
|
|||
ftype_lw: str = ftype_up.lower()
|
||||
# allow templating the file name with the output ftype, useful with the "auto" ftype
|
||||
self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
|
||||
self.gguf_writer = gguf.GGUFWriterSplit(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], split_arguments,
|
||||
endianess=self.endianess, use_temp_file=self.use_temp_file)
|
||||
self.gguf_writer = gguf.GGUFWriter(None, gguf.MODEL_ARCH_NAMES[self.model_arch], split_arguments,
|
||||
endianess=self.endianess, use_temp_file=self.use_temp_file)
|
||||
|
||||
@classmethod
|
||||
def __init_subclass__(cls):
|
||||
|
@ -326,16 +326,14 @@ class Model:
|
|||
|
||||
def write(self):
|
||||
self.write_tensors()
|
||||
self.gguf_writer.init_shards()
|
||||
self.gguf_writer.write_header_to_file(self.fname_out)
|
||||
self.gguf_writer.write_kv_data_to_file()
|
||||
self.gguf_writer.write_tensors_to_file(progress=True)
|
||||
self.gguf_writer.close()
|
||||
|
||||
def write_vocab(self):
|
||||
if self.gguf_writer.split_arguments.split:
|
||||
if self.gguf_writer.split_arguments.split_style != gguf.SplitStyle.NONE:
|
||||
raise ValueError('Splitting the vocabulary is not supported')
|
||||
self.gguf_writer.init_shards()
|
||||
self.gguf_writer.write_header_to_file(self.fname_out)
|
||||
self.gguf_writer.write_kv_data_to_file()
|
||||
self.gguf_writer.close()
|
||||
|
|
|
@ -2,7 +2,6 @@ from .constants import *
|
|||
from .lazy import *
|
||||
from .gguf_reader import *
|
||||
from .gguf_writer import *
|
||||
from .gguf_writer_split import *
|
||||
from .quants import *
|
||||
from .tensor_mapping import *
|
||||
from .vocab import *
|
||||
|
|
|
@ -5,10 +5,13 @@ import os
|
|||
import shutil
|
||||
import struct
|
||||
import tempfile
|
||||
from argparse import Namespace
|
||||
from collections import deque
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from pathlib import Path
|
||||
from io import BufferedWriter
|
||||
from typing import IO, Any, Sequence, Mapping
|
||||
from typing import IO, Any, Sequence, Mapping, TypeAlias
|
||||
from string import ascii_letters, digits
|
||||
|
||||
import numpy as np
|
||||
|
@ -27,10 +30,19 @@ from .constants import (
|
|||
)
|
||||
|
||||
from .quants import quant_shape_from_byte_shape
|
||||
from .constants import Keys
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
|
||||
NUM_SHARD_KV_DATA = 6
|
||||
METADATA_ONLY_INDICATOR = -1
|
||||
|
||||
KVTempData: TypeAlias = dict[str, tuple[Any, GGUFValueType | None]] # {key: (value, type)}
|
||||
TensorTempData: TypeAlias = tuple[str, np.ndarray[Any, Any], GGMLQuantizationType | None] # (tensor name, tensor data, tensor dtype)
|
||||
|
||||
|
||||
@dataclass
|
||||
class TensorInfo:
|
||||
shape: Sequence[int]
|
||||
|
@ -45,6 +57,25 @@ class GGUFValue:
|
|||
type: GGUFValueType
|
||||
|
||||
|
||||
@dataclass
|
||||
class Shard:
|
||||
path: Path
|
||||
tensor_count: int
|
||||
size: int
|
||||
tensors: deque[TensorTempData]
|
||||
|
||||
|
||||
class SplitArguments:
|
||||
def __init__(self, args: Namespace) -> None:
|
||||
self.split_max_tensors = args.split_max_tensors if args.split_max_tensors else 0
|
||||
self.split_max_size = GGUFWriter.split_str_to_n_bytes(args.split_max_size) if args.split_max_size else 0
|
||||
self.split_style = SplitStyle.TENSORS if self.split_max_tensors \
|
||||
else SplitStyle.SIZE if self.split_max_size \
|
||||
else SplitStyle.NONE
|
||||
self.dry_run = args.dry_run
|
||||
self.small_first_shard = args.no_tensor_first_split
|
||||
|
||||
|
||||
class WriterState(Enum):
|
||||
NO_FILE = auto()
|
||||
EMPTY = auto()
|
||||
|
@ -54,11 +85,17 @@ class WriterState(Enum):
|
|||
WEIGHTS = auto()
|
||||
|
||||
|
||||
class SplitStyle(Enum):
|
||||
NONE = auto()
|
||||
TENSORS = auto()
|
||||
SIZE = auto()
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
fout: BufferedWriter | None
|
||||
fout: list[BufferedWriter | None]
|
||||
path: os.PathLike[str] | str | None
|
||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
||||
tensors: dict[str, TensorInfo]
|
||||
tensors: list[dict[str, TensorInfo]]
|
||||
kv_data: dict[str, GGUFValue]
|
||||
state: WriterState
|
||||
_simple_value_packing = {
|
||||
|
@ -76,25 +113,55 @@ class GGUFWriter:
|
|||
}
|
||||
|
||||
def __init__(
|
||||
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False,
|
||||
endianess: GGUFEndian = GGUFEndian.LITTLE, add_architecture: bool = True
|
||||
self, path: os.PathLike[str] | str | None, arch: str, split_arguments: SplitArguments,
|
||||
use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE
|
||||
):
|
||||
self.fout = None
|
||||
self.fout = []
|
||||
self.path = path
|
||||
self.arch = arch
|
||||
self.endianess = endianess
|
||||
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||
self.split_arguments = split_arguments
|
||||
self.use_temp_file = use_temp_file
|
||||
self.temp_file = None
|
||||
self.tensors = dict()
|
||||
self.tensors = []
|
||||
self.kv_data = dict()
|
||||
logger.info("gguf: This GGUF file is for {0} Endian only".format(
|
||||
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||
))
|
||||
self.state = WriterState.NO_FILE
|
||||
|
||||
if add_architecture:
|
||||
self.add_architecture()
|
||||
if self.split_arguments.small_first_shard:
|
||||
self.tensors.append(dict())
|
||||
|
||||
self.add_architecture()
|
||||
|
||||
def verify_arguments(self) -> None:
|
||||
total_tensors = sum(len(ti) for ti in self.tensors)
|
||||
total_size = sum(sum(GGUFWriter.get_tensor_size(ti) for ti in t.values()) for t in self.tensors)
|
||||
|
||||
if self.split_arguments.split_max_tensors and total_tensors < self.split_arguments.split_max_tensors:
|
||||
logger.warning("Model has fewer tensors than the split threshold, not splitting")
|
||||
self.split_style = SplitStyle.NONE
|
||||
|
||||
if self.split_arguments.split_max_size and total_size < self.split_arguments.split_max_size:
|
||||
logger.warning("Model has smaller size than the split threshold, not splitting")
|
||||
self.split_style = SplitStyle.NONE
|
||||
|
||||
# no shards are created when writing vocab so make one
|
||||
if not self.tensors or len(self.tensors) == 0:
|
||||
self.tensors.append(dict())
|
||||
|
||||
def format_shard_names(self) -> list[os.PathLike[str]]:
|
||||
pathobj = Path(self.path)
|
||||
if self.split_arguments.split_style == SplitStyle.NONE:
|
||||
return [pathobj]
|
||||
|
||||
shard_names = []
|
||||
for i in range(len(self.tensors)):
|
||||
shard_names.append(pathobj.with_name(SHARD_NAME_FORMAT.format(pathobj.stem, i + 1, len(self.tensors))))
|
||||
|
||||
return shard_names
|
||||
|
||||
def open_output_file(self, path: os.PathLike[str] | str | None = None) -> None:
|
||||
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
|
||||
|
@ -107,24 +174,52 @@ class GGUFWriter:
|
|||
self.path = path
|
||||
|
||||
if self.path is not None:
|
||||
if self.fout is not None:
|
||||
self.fout.close()
|
||||
self.fout = open(self.path, "wb")
|
||||
self.fout = []
|
||||
for fout in self.format_shard_names():
|
||||
self.fout.append(open(fout, "wb"))
|
||||
self.state = WriterState.EMPTY
|
||||
|
||||
def print_plan(self) -> None:
|
||||
logger.info("Writing the following files:")
|
||||
for i in range(len(self.fout)):
|
||||
logger.info(f" {self.fout[i].name}: n_tensors = {len(self.tensors[i])}, total_size = {GGUFWriter.format_n_bytes_to_str(GGUFWriter.get_tensors_total_size(self.tensors[i].values()))}")
|
||||
|
||||
if self.split_arguments.dry_run:
|
||||
logger.info("Dry run, not writing files")
|
||||
exit()
|
||||
|
||||
def write_header_to_file(self, path: os.PathLike[str] | str | None = None) -> None:
|
||||
self.verify_arguments()
|
||||
self.open_output_file(path)
|
||||
self.print_plan()
|
||||
|
||||
if self.state is not WriterState.EMPTY:
|
||||
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||
|
||||
self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
|
||||
self._write_packed("I", GGUF_VERSION)
|
||||
self._write_packed("Q", len(self.tensors))
|
||||
self._write_packed("Q", len(self.kv_data))
|
||||
self.flush()
|
||||
assert len(self.fout) == len(self.tensors)
|
||||
|
||||
for i in range(len(self.fout)):
|
||||
fout = self.fout[i]
|
||||
self._write_packed(fout, "<I", GGUF_MAGIC, skip_pack_prefix = True)
|
||||
self._write_packed(fout, "I", GGUF_VERSION)
|
||||
self._write_packed(fout, "Q", len(self.tensors[i]))
|
||||
kv_data_len = len(self.kv_data) if i == 0 else 0
|
||||
if self.split_arguments.split_style != SplitStyle.NONE or self.split_arguments.small_first_shard:
|
||||
kv_data_len += NUM_SHARD_KV_DATA
|
||||
self._write_packed(fout, "Q", kv_data_len)
|
||||
self.fout[i].flush()
|
||||
self.state = WriterState.HEADER
|
||||
|
||||
def add_shard_kv_data(self, kv_data: bytearray, shard_no: int) -> bytearray:
|
||||
total_tensors = sum(len(t) for t in self.tensors)
|
||||
kv_data += self._pack_val(Keys.Split.LLM_KV_SPLIT_NO, GGUFValueType.STRING, add_vtype=False)
|
||||
kv_data += self._pack_val(shard_no, GGUFValueType.UINT16, add_vtype=True)
|
||||
kv_data += self._pack_val(Keys.Split.LLM_KV_SPLIT_COUNT, GGUFValueType.STRING, add_vtype=False)
|
||||
kv_data += self._pack_val(len(self.fout), GGUFValueType.UINT16, add_vtype=True)
|
||||
kv_data += self._pack_val(Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT, GGUFValueType.STRING, add_vtype=False)
|
||||
kv_data += self._pack_val(total_tensors, GGUFValueType.INT32, add_vtype=True)
|
||||
return kv_data
|
||||
|
||||
def write_kv_data_to_file(self) -> None:
|
||||
if self.state is not WriterState.HEADER:
|
||||
raise ValueError(f'Expected output file to contain the header, got {self.state}')
|
||||
|
@ -136,8 +231,16 @@ class GGUFWriter:
|
|||
kv_data += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
|
||||
kv_data += self._pack_val(val.value, val.type, add_vtype=True)
|
||||
|
||||
self.fout.write(kv_data)
|
||||
self.flush()
|
||||
if len(self.fout) > 1:
|
||||
kv_data = self.add_shard_kv_data(kv_data, 0)
|
||||
|
||||
# only the first shard needs kv data
|
||||
self.fout[0].write(kv_data)
|
||||
self.fout[0].flush()
|
||||
|
||||
for i in range(1, len(self.fout)):
|
||||
self.fout[i].write(self.add_shard_kv_data(bytearray(), i))
|
||||
self.fout[i].flush()
|
||||
self.state = WriterState.KV_DATA
|
||||
|
||||
def write_ti_data_to_file(self) -> None:
|
||||
|
@ -145,21 +248,23 @@ class GGUFWriter:
|
|||
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
|
||||
assert self.fout is not None
|
||||
|
||||
ti_data = bytearray()
|
||||
offset_tensor = 0
|
||||
for i in range(len(self.fout)):
|
||||
assert self.fout[i] is not None
|
||||
ti_data = bytearray()
|
||||
offset_tensor = 0
|
||||
|
||||
for name, ti in self.tensors.items():
|
||||
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
|
||||
n_dims = len(ti.shape)
|
||||
ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
ti_data += self._pack("Q", ti.shape[n_dims - 1 - i])
|
||||
ti_data += self._pack("I", ti.dtype)
|
||||
ti_data += self._pack("Q", offset_tensor)
|
||||
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
|
||||
for name, ti in self.tensors[i].items():
|
||||
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
|
||||
n_dims = len(ti.shape)
|
||||
ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
ti_data += self._pack("Q", ti.shape[n_dims - 1 - i])
|
||||
ti_data += self._pack("I", ti.dtype)
|
||||
ti_data += self._pack("Q", offset_tensor)
|
||||
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
|
||||
|
||||
self.fout.write(ti_data)
|
||||
self.flush()
|
||||
self.fout[i].write(ti_data)
|
||||
self.fout[i].flush()
|
||||
self.state = WriterState.TI_DATA
|
||||
|
||||
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
|
||||
|
@ -248,7 +353,18 @@ class GGUFWriter:
|
|||
if tensor_dtype == np.uint8:
|
||||
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
|
||||
|
||||
self.tensors[name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
|
||||
# create splits as necessary, such as to start it off
|
||||
if (len(self.tensors) == self.split_arguments.small_first_shard \
|
||||
# or split when over tensor limit
|
||||
or (self.split_arguments.split_style == SplitStyle.TENSORS \
|
||||
and len(self.tensors[-1]) >= self.split_arguments.split_max_tensors) \
|
||||
# or split when over size limit
|
||||
or (self.split_arguments.split_style == SplitStyle.SIZE \
|
||||
and GGUFWriter.get_tensors_total_size(self.tensors[-1].values()) + tensor_nbytes > self.split_arguments.split_max_size)):
|
||||
|
||||
self.tensors.append(dict())
|
||||
|
||||
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
|
||||
|
||||
def add_tensor(
|
||||
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
|
||||
|
@ -265,7 +381,7 @@ class GGUFWriter:
|
|||
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
|
||||
|
||||
if self.temp_file is None:
|
||||
self.tensors[name].tensor = tensor
|
||||
self.tensors[-1][name].tensor = tensor
|
||||
return
|
||||
|
||||
tensor.tofile(self.temp_file)
|
||||
|
@ -283,9 +399,12 @@ class GGUFWriter:
|
|||
|
||||
if self.endianess == GGUFEndian.BIG:
|
||||
tensor.byteswap(inplace=True)
|
||||
self.write_padding(self.fout, self.fout.tell())
|
||||
tensor.tofile(self.fout)
|
||||
self.write_padding(self.fout, tensor.nbytes)
|
||||
|
||||
for fout in self.fout:
|
||||
assert fout is not None
|
||||
self.write_padding(fout, fout.tell())
|
||||
tensor.tofile(fout)
|
||||
self.write_padding(fout, tensor.nbytes)
|
||||
|
||||
self.state = WriterState.WEIGHTS
|
||||
|
||||
|
@ -294,27 +413,31 @@ class GGUFWriter:
|
|||
|
||||
assert self.fout is not None
|
||||
|
||||
self.write_padding(self.fout, self.fout.tell())
|
||||
for fout in self.fout:
|
||||
assert fout is not None
|
||||
self.write_padding(fout, fout.tell())
|
||||
|
||||
if self.temp_file is None:
|
||||
bar = None
|
||||
for i in range(len(self.fout)):
|
||||
assert self.fout[i] is not None
|
||||
bar = None
|
||||
|
||||
if progress:
|
||||
from tqdm import tqdm
|
||||
if progress:
|
||||
from tqdm import tqdm
|
||||
|
||||
total_bytes = sum(t.nbytes for t in self.tensors.values())
|
||||
total_bytes = GGUFWriter.get_tensors_total_size(self.tensors[i].values())
|
||||
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
|
||||
# relying on the fact that Python dicts preserve insertion order (since 3.7)
|
||||
for ti in self.tensors.values():
|
||||
assert ti.tensor is not None # can only iterate once over the tensors
|
||||
assert ti.tensor.nbytes == ti.nbytes
|
||||
ti.tensor.tofile(self.fout)
|
||||
if bar is not None:
|
||||
bar.update(ti.nbytes)
|
||||
self.write_padding(self.fout, ti.nbytes)
|
||||
ti.tensor = None
|
||||
# relying on the fact that Python dicts preserve insertion order (since 3.7)
|
||||
for ti in self.tensors[i].values():
|
||||
assert ti.tensor is not None # can only iterate once over the tensors
|
||||
assert ti.tensor.nbytes == ti.nbytes
|
||||
ti.tensor.tofile(self.fout[i])
|
||||
if bar is not None:
|
||||
bar.update(ti.nbytes)
|
||||
self.write_padding(self.fout[i], ti.nbytes)
|
||||
ti.tensor = None
|
||||
else:
|
||||
self.temp_file.seek(0)
|
||||
|
||||
|
@ -326,12 +449,16 @@ class GGUFWriter:
|
|||
|
||||
def flush(self) -> None:
|
||||
assert self.fout is not None
|
||||
self.fout.flush()
|
||||
for fout in self.fout:
|
||||
assert fout is not None
|
||||
fout.flush()
|
||||
|
||||
def close(self) -> None:
|
||||
if self.fout is not None:
|
||||
self.fout.close()
|
||||
self.fout = None
|
||||
for fout in self.fout:
|
||||
if fout is not None:
|
||||
fout.close()
|
||||
self.fout = []
|
||||
|
||||
def add_architecture(self) -> None:
|
||||
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
||||
|
@ -609,6 +736,46 @@ class GGUFWriter:
|
|||
|
||||
return kv_data
|
||||
|
||||
def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
|
||||
assert self.fout is not None
|
||||
self.fout.write(self._pack(fmt, value, skip_pack_prefix))
|
||||
def _write_packed(self, fout: BufferedWriter, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
|
||||
assert fout is not None
|
||||
fout.write(self._pack(fmt, value, skip_pack_prefix))
|
||||
|
||||
@staticmethod
|
||||
def get_tensor_size(tensor) -> int:
|
||||
try:
|
||||
return tensor.data_type.elements_to_bytes(np.prod(tensor.shape))
|
||||
except AttributeError: # numpy ndarray[Any, Any]
|
||||
return tensor.nbytes
|
||||
|
||||
@staticmethod
|
||||
def get_tensors_total_size(tensors) -> int:
|
||||
return sum(GGUFWriter.get_tensor_size(ti) for ti in tensors)
|
||||
|
||||
@staticmethod
|
||||
def split_str_to_n_bytes(split_str: str) -> int:
|
||||
if split_str.endswith("K"):
|
||||
n = int(split_str[:-1]) * 1000
|
||||
elif split_str.endswith("M"):
|
||||
n = int(split_str[:-1]) * 1000 * 1000
|
||||
elif split_str.endswith("G"):
|
||||
n = int(split_str[:-1]) * 1000 * 1000 * 1000
|
||||
elif split_str.isnumeric():
|
||||
n = int(split_str)
|
||||
else:
|
||||
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
|
||||
|
||||
if n <= 0:
|
||||
raise ValueError(f"Invalid split size: {split_str}, must be positive")
|
||||
|
||||
return n
|
||||
|
||||
@staticmethod
|
||||
def format_n_bytes_to_str(num: int) -> str:
|
||||
if num == METADATA_ONLY_INDICATOR:
|
||||
return "negligible - metadata only"
|
||||
fnum = float(num)
|
||||
for unit in ("", "K", "M", "G"):
|
||||
if abs(fnum) < 1000.0:
|
||||
return f"{fnum:3.1f}{unit}"
|
||||
fnum /= 1000.0
|
||||
return f"{fnum:.1f}T - over 1TB, --split recommended"
|
|
@ -1,245 +0,0 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import logging
|
||||
from enum import IntEnum
|
||||
from typing import TYPE_CHECKING, Any, Sequence
|
||||
from argparse import Namespace
|
||||
from collections import deque
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from .constants import (
|
||||
GGMLQuantizationType,
|
||||
GGUFEndian,
|
||||
GGUFValueType
|
||||
)
|
||||
from .gguf_writer import GGUFWriter, WriterState
|
||||
from .constants import Keys
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
|
||||
METADATA_ONLY_INDICATOR = -1
|
||||
|
||||
KVTempData: TypeAlias = dict[str, tuple[Any, GGUFValueType | None]] # {key: (value, type)}
|
||||
TensorTempData: TypeAlias = tuple[str, np.ndarray[Any, Any], GGMLQuantizationType | None] # (tensor name, tensor data, tensor dtype)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Shard:
|
||||
path: Path
|
||||
tensor_count: int
|
||||
size: int
|
||||
tensors: deque[TensorTempData]
|
||||
|
||||
|
||||
class SplitStyle(IntEnum):
|
||||
NONE = 0
|
||||
TENSORS = 1
|
||||
SIZE = 2
|
||||
|
||||
|
||||
class SplitArguments:
|
||||
def __init__(self, args: Namespace) -> None:
|
||||
self.split_max_tensors = args.split_max_tensors if args.split_max_tensors else 0
|
||||
self.split_max_size = GGUFWriterSplit.split_str_to_n_bytes(args.split_max_size) if args.split_max_size else 0
|
||||
self.split_style = SplitStyle.TENSORS if self.split_max_tensors \
|
||||
else SplitStyle.SIZE if self.split_max_size \
|
||||
else SplitStyle.NONE
|
||||
self.dry_run = args.dry_run
|
||||
self.small_first_shard = args.no_tensor_first_split
|
||||
|
||||
|
||||
class GGUFWriterSplit(GGUFWriter):
|
||||
kv_data: KVTempData
|
||||
split_arguments: SplitArguments
|
||||
shards: list[Shard]
|
||||
shard_writers: list[tuple[GGUFWriter, os.PathLike[str]]]
|
||||
|
||||
def __init__(self, path: os.PathLike[str] | str, arch: str, split_arguments: SplitArguments,
|
||||
use_temp_file: bool = True, endianess: GGUFEndian = GGUFEndian.LITTLE
|
||||
) -> None:
|
||||
# we intentionally don't call superclass constructor
|
||||
self.arch = arch
|
||||
self.path = Path(path)
|
||||
self.endianess = endianess
|
||||
self.kv_data = {}
|
||||
self.shards = []
|
||||
self.shard_writers = []
|
||||
self.total_tensors = 0
|
||||
self.use_temp_file = use_temp_file
|
||||
self.split_arguments = split_arguments
|
||||
self.recent_key = None
|
||||
self.state = WriterState.EMPTY
|
||||
|
||||
if self.split_arguments.small_first_shard:
|
||||
self.shards.append(Shard(Path(), 0, METADATA_ONLY_INDICATOR, deque()))
|
||||
|
||||
def init_shards(self) -> None:
|
||||
self.total_tensors = sum(shard.tensor_count for shard in self.shards)
|
||||
total_size = sum(shard.size for shard in self.shards)
|
||||
|
||||
# check if we need to split
|
||||
if self.split_arguments.split_max_tensors and self.total_tensors < self.split_arguments.split_max_tensors:
|
||||
logger.warning("Model has fewer tensors than the split threshold, not splitting")
|
||||
self.split_style = SplitStyle.NONE
|
||||
|
||||
if self.split_arguments.split_max_size and total_size < self.split_arguments.split_max_size:
|
||||
logger.warning("Model has smaller size than the split threshold, not splitting")
|
||||
self.split_style = SplitStyle.NONE
|
||||
|
||||
# no shards are created when writing vocab so make one
|
||||
if not self.shards:
|
||||
self.shards.append(Shard(Path(), 0, METADATA_ONLY_INDICATOR, deque()))
|
||||
|
||||
# format shard names
|
||||
if len(self.shards) == 1:
|
||||
self.shards[0].path = self.path
|
||||
else:
|
||||
for i in range(len(self.shards)):
|
||||
self.shards[i].path = self.path.with_name(SHARD_NAME_FORMAT.format(self.path.stem, i + 1, len(self.shards)))
|
||||
|
||||
# print shard info
|
||||
logger.info("Writing the following files:")
|
||||
for shard in self.shards:
|
||||
logger.info(f" {shard.path}: n_tensors = {shard.tensor_count}, total_size = {GGUFWriterSplit.format_n_bytes_to_str(shard.size)}")
|
||||
|
||||
if self.split_arguments.dry_run:
|
||||
logger.info("Dry run, not writing files")
|
||||
exit()
|
||||
|
||||
for i, shard in enumerate(self.shards):
|
||||
# add_architecture is used for consistency - examples/gguf_split doesn't add arch to all shards
|
||||
writer = GGUFWriter(None, self.arch, use_temp_file=self.use_temp_file,
|
||||
endianess=self.endianess, add_architecture=(i == 0))
|
||||
|
||||
# only the first shard needs all the KV data
|
||||
if i == 0:
|
||||
for key, (value, etype) in self.kv_data.items():
|
||||
writer.add_key_value(key, value, etype)
|
||||
|
||||
# add split metadata unless it's one file - small first shard splits even with SplitStyle.NONE
|
||||
if self.split_arguments.split_style != SplitStyle.NONE or self.split_arguments.small_first_shard:
|
||||
writer.add_uint16(Keys.Split.LLM_KV_SPLIT_NO, i)
|
||||
writer.add_uint16(Keys.Split.LLM_KV_SPLIT_COUNT, len(self.shards))
|
||||
writer.add_int32(Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT, self.total_tensors)
|
||||
|
||||
# add tensors, deque popleft() ensures references to eager tensors are not kept
|
||||
while True:
|
||||
try:
|
||||
(name, tensor, dtype) = shard.tensors.popleft()
|
||||
writer.add_tensor(name, tensor, raw_dtype=dtype)
|
||||
except IndexError:
|
||||
break
|
||||
|
||||
self.shard_writers.append((writer, shard.path))
|
||||
|
||||
def write_header_to_file(self, path: os.PathLike[str] | str | None = None) -> None:
|
||||
if self.state is not WriterState.EMPTY:
|
||||
raise ValueError(f'Expected GGUFWriterSplit state to be EMPTY, got {self.state}')
|
||||
|
||||
for (writer, path) in self.shard_writers:
|
||||
writer.write_header_to_file(path)
|
||||
|
||||
self.state = WriterState.HEADER
|
||||
|
||||
def write_kv_data_to_file(self) -> None:
|
||||
if self.state is not WriterState.HEADER:
|
||||
raise ValueError(f'Expected GGUFWriterSplit state to be HEADER, got {self.state}')
|
||||
|
||||
for (writer, _) in self.shard_writers:
|
||||
writer.write_kv_data_to_file()
|
||||
|
||||
self.state = WriterState.KV_DATA
|
||||
|
||||
def write_tensors_to_file(self, *, progress: bool = False) -> None:
|
||||
if self.state is not WriterState.KV_DATA:
|
||||
raise ValueError(f'Expected GGUFWriterSplit state to be KV_DATA, got {self.state}')
|
||||
|
||||
running_total = self.total_tensors
|
||||
for i in range(len(self.shard_writers)):
|
||||
writer = self.shard_writers[i][0]
|
||||
is_metadata = len(writer.tensors) == 0
|
||||
if is_metadata:
|
||||
logger.info(f"Writing to shard {i + 1}/{len(self.shards)} with metadata only")
|
||||
else:
|
||||
logger.info(f"Writing to shard {i + 1}/{len(self.shards)} with {len(writer.tensors)}/{running_total} remaining tensors (of {self.total_tensors} total)")
|
||||
running_total -= len(writer.tensors)
|
||||
writer.write_tensors_to_file(progress=(progress and not is_metadata))
|
||||
del writer
|
||||
|
||||
self.state = WriterState.TI_DATA
|
||||
|
||||
# override add_key_value to handle kv data separately
|
||||
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
|
||||
self.kv_data[key] = (val, vtype)
|
||||
|
||||
def add_tensor(
|
||||
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
|
||||
raw_dtype: GGMLQuantizationType | None = None,
|
||||
) -> None:
|
||||
# we build splits as tensors are added so we need logic to figure out when to split
|
||||
# logic is all in the conditional because it short-circuits, otherwise accessing self.shards[-1] would throw an error
|
||||
|
||||
# create a first shard to start it off
|
||||
if (len(self.shards) == self.split_arguments.small_first_shard \
|
||||
# or split when over tensor limit
|
||||
or (self.split_arguments.split_style == SplitStyle.TENSORS \
|
||||
and self.shards[-1].tensor_count >= self.split_arguments.split_max_tensors) \
|
||||
# or split when over size limit
|
||||
or (self.split_arguments.split_style == SplitStyle.SIZE \
|
||||
and self.shards[-1].size + GGUFWriterSplit.get_tensor_size(tensor) > self.split_arguments.split_max_size)):
|
||||
|
||||
# we fill in the name later when we know how many shards there are
|
||||
self.shards.append(Shard(Path(), 1, GGUFWriterSplit.get_tensor_size(tensor), deque([(name, tensor, raw_dtype)])))
|
||||
else:
|
||||
self.shards[-1].tensor_count += 1
|
||||
self.shards[-1].size += GGUFWriterSplit.get_tensor_size(tensor)
|
||||
self.shards[-1].tensors.append((name, tensor, raw_dtype))
|
||||
|
||||
def close(self) -> None:
|
||||
for (writer, _) in self.shard_writers:
|
||||
writer.close()
|
||||
|
||||
@staticmethod
|
||||
def get_tensor_size(tensor) -> int:
|
||||
try:
|
||||
return tensor.data_type.elements_to_bytes(np.prod(tensor.shape))
|
||||
except AttributeError: # numpy ndarray[Any, Any]
|
||||
return tensor.nbytes
|
||||
|
||||
@staticmethod
|
||||
def split_str_to_n_bytes(split_str: str) -> int:
|
||||
if split_str.endswith("K"):
|
||||
n = int(split_str[:-1]) * 1000
|
||||
elif split_str.endswith("M"):
|
||||
n = int(split_str[:-1]) * 1000 * 1000
|
||||
elif split_str.endswith("G"):
|
||||
n = int(split_str[:-1]) * 1000 * 1000 * 1000
|
||||
elif split_str.isnumeric():
|
||||
n = int(split_str)
|
||||
else:
|
||||
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
|
||||
|
||||
if n <= 0:
|
||||
raise ValueError(f"Invalid split size: {split_str}, must be positive")
|
||||
|
||||
return n
|
||||
|
||||
@staticmethod
|
||||
def format_n_bytes_to_str(num: int) -> str:
|
||||
if num == METADATA_ONLY_INDICATOR:
|
||||
return "negligible - metadata only"
|
||||
fnum = float(num)
|
||||
for unit in ("", "K", "M", "G"):
|
||||
if abs(fnum) < 1000.0:
|
||||
return f"{fnum:3.1f}{unit}"
|
||||
fnum /= 1000.0
|
||||
return f"{fnum:.1f}T - over 1TB, --split recommended"
|
Loading…
Add table
Add a link
Reference in a new issue