Merge branch 'ggerganov:master' into server-ui-improvements

This commit is contained in:
Yazan Agha-Schrader 2023-12-01 20:38:46 +01:00 committed by GitHub
commit 97f4ec4631
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
30 changed files with 1035 additions and 327 deletions

View file

@ -13,6 +13,8 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./main "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@ -34,6 +36,8 @@ else
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server"

25
.gitignore vendored
View file

@ -88,15 +88,16 @@ poetry.lock
poetry.toml
# Test binaries
tests/test-grammar-parser
tests/test-llama-grammar
tests/test-double-float
tests/test-grad0
tests/test-opt
tests/test-quantize-fns
tests/test-quantize-perf
tests/test-sampling
tests/test-tokenizer-0-llama
tests/test-tokenizer-0-falcon
tests/test-tokenizer-1-llama
tests/test-tokenizer-1-bpe
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-double-float
/tests/test-grad0
/tests/test-opt
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-sampling
/tests/test-tokenizer-0-llama
/tests/test-tokenizer-0-falcon
/tests/test-tokenizer-1-llama
/tests/test-tokenizer-1-bpe
/tests/test-rope

View file

@ -116,6 +116,11 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(CheckCXXCompilerFlag)
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
endif()
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
add_compile_options(-fsanitize=thread)
@ -165,7 +170,7 @@ if (LLAMA_METAL)
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}

View file

@ -8,7 +8,7 @@ BUILD_TARGETS = \
TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -30,7 +30,7 @@ ifeq '' '$(findstring clang,$(shell $(CC) --version))'
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
else
CC_IS_CLANG=1
ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))'
ifeq '' '$(findstring Apple,$(shell $(CC) --version))'
CC_IS_LLVM_CLANG=1
else
CC_IS_APPLE_CLANG=1
@ -174,6 +174,10 @@ ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
MK_LDFLAGS += -g
ifeq ($(UNAME_S),Linux)
MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS
endif
else
MK_CPPFLAGS += -DNDEBUG
endif
@ -648,7 +652,7 @@ beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
@ -701,28 +705,28 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-opt: tests/test-opt.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
@ -737,5 +741,8 @@ tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMM
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@

View file

@ -122,6 +122,7 @@ as the main playground for developing new features for the [ggml](https://github
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [withcatai/catai](https://github.com/withcatai/catai)
- [semperai/amica](https://github.com/semperai/amica)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
---
@ -328,7 +329,7 @@ mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
- #### Accelerate Framework:
@ -900,7 +901,7 @@ Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the Gitlab Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
#### Usage

View file

@ -11,8 +11,13 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
if(NOT IS_DIRECTORY "${GIT_DIR}")
file(READ ${GIT_DIR} REAL_GIT_DIR_LINK)
string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK})
string(FIND "${REAL_GIT_DIR}" "/" SLASH_POS)
if (SLASH_POS EQUAL 0)
set(GIT_DIR "${REAL_GIT_DIR}")
else()
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
endif()
endif()
set(GIT_INDEX "${GIT_DIR}/index")
else()

View file

@ -10,7 +10,7 @@ import re
import sys
from enum import IntEnum
from pathlib import Path
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
import numpy as np
import torch
@ -168,6 +168,8 @@ class Model:
return PersimmonModel
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
return Model
def _is_model_safetensors(self) -> bool:
@ -203,6 +205,8 @@ class Model:
return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
raise NotImplementedError(f'Architecture "{arch}" not supported!')
@ -832,6 +836,131 @@ class StableLMModel(Model):
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)
class QwenModel(Model):
@staticmethod
def token_bytes_to_string(b):
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
byte_encoder = bytes_to_unicode()
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
@staticmethod
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
return parts
def set_vocab(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[self.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
assert len(merged) == 2
merges.append(' '.join(map(self.token_bytes_to_string, merged)))
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
added_vocab = tokenizer.special_tokens
for i in range(vocab_size):
if i not in reverse_vocab:
pad_token = f"[PAD{i}]".encode("utf-8")
tokens.append(bytearray(pad_token))
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
special_vocab.merges = merges
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
self.gguf_writer.add_name("Qwen")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
def write_tensors(self):
block_count = self.hparams["num_hidden_layers"]
model_kv = dict(self.get_tensors())
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in model_kv.items():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ######

View file

@ -267,7 +267,7 @@ class Params:
n_ctx = 2048
return Params(
n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,

View file

@ -155,7 +155,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq);
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View file

@ -1,4 +1,4 @@
This is a swift clone of `examples/batched`.
$ `make`
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
$ `./batched_swift MODEL_PATH [PROMPT] [PARALLEL]`

View file

@ -230,18 +230,15 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
if nTokens < 0 {
if result.count >= -Int(nTokens) {
result.removeLast(-Int(nTokens))
} else {
result.removeAll()
}
let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount)
let check = llama_token_to_piece(
model,
token,
&result,
Int32(result.count)
)
assert(check == nTokens)
assert(check == actualTokensCount)
} else {
result.removeLast(result.count - Int(nTokens))
}
@ -259,5 +256,4 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
buffer = []
return bufferString
}
return nil
}

View file

@ -164,13 +164,21 @@ actor LlamaContext {
private func token_to_piece(token: llama_token) -> String {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
result.initialize(repeating: Int8(0), count: 8)
let _ = llama_token_to_piece(model, token, result, 8)
let resultStr = String(cString: result)
defer {
result.deallocate()
}
let nTokens = llama_token_to_piece(model, token, result, 8)
return resultStr
if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
defer {
newResult.deallocate()
}
_ = llama_token_to_piece(model, token, newResult, -nTokens)
return String(cString: newResult)
} else {
return String(cString: result)
}
}
}

View file

@ -5,7 +5,7 @@ import json
import torch
import numpy as np
from gguf import *
from transformers import CLIPModel, CLIPProcessor
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
@ -78,11 +78,19 @@ ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
# with proper
args = ap.parse_args()
@ -96,13 +104,20 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
if args.clip_model_is_vision:
vocab = None
tokens = None
else:
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f)
tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
if args.clip_model_is_vision:
v_hparams = config
t_hparams = None
else:
v_hparams = config["vision_config"]
t_hparams = config["text_config"]
@ -117,9 +132,12 @@ ftype = 1
if args.use_f32:
ftype = 0
model = CLIPModel.from_pretrained(dir_model)
processor = CLIPProcessor.from_pretrained(dir_model)
if args.clip_model_is_vision:
model = CLIPVisionModel.from_pretrained(dir_model)
processor = None
else:
model = CLIPModel.from_pretrained(dir_model)
processor = CLIPProcessor.from_pretrained(dir_model)
fname_middle = None
has_text_encoder = True
@ -128,13 +146,13 @@ has_llava_projector = False
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
else:
fname_middle = ""
@ -182,8 +200,12 @@ if has_vision_encoder:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)

View file

@ -0,0 +1,7 @@
# llama.cpp/examples/lookahead
Demonstartion of lookahead decoding technique:
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
More info: https://github.com/ggerganov/llama.cpp/pull/4207

View file

@ -100,6 +100,12 @@ static void sigint_handler(int signo) {
}
#endif
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
int main(int argc, char ** argv) {
gpt_params params;
g_params = &params;
@ -113,6 +119,7 @@ int main(int argc, char ** argv) {
log_set_target(log_filename_generator("main", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS
// TODO: Dump params ?

View file

@ -11,10 +11,10 @@ app = Flask(__name__)
slot_id = -1
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
@ -34,19 +34,19 @@ def is_present(json, key):
#convert chat to prompt
def convert_chat(messages):
prompt = "" + args.chat_prompt.replace("\\n", "\n")
system_n = args.system_name.replace("\\n", "\n")
user_n = args.user_name.replace("\\n", "\n")
ai_n = args.ai_name.replace("\\n", "\n")
stop = args.stop.replace("\\n", "\n")
system_n = args.system_name
user_n = args.user_name
ai_n = args.ai_name
stop = args.stop
prompt = "" + args.chat_prompt + stop
for line in messages:
if (line["role"] == "system"):
prompt += f"{system_n}{line['content']}"
prompt += f"{system_n}{line['content']}{stop}"
if (line["role"] == "user"):
prompt += f"{user_n}{line['content']}"
prompt += f"{user_n}{line['content']}{stop}"
if (line["role"] == "assistant"):
prompt += f"{ai_n}{line['content']}{stop}"
prompt += ai_n.rstrip()
@ -130,7 +130,7 @@ def make_resData_stream(data, chat=False, time_now = 0, start=False):
}
]
}
slot_id = data["slot_id"]
slot_id = data.get("slot_id")
if (chat):
if (start):
resData["choices"][0]["delta"] = {
@ -150,11 +150,13 @@ def make_resData_stream(data, chat=False, time_now = 0, start=False):
return resData
@app.route('/chat/completions', methods=['POST'])
@app.route('/v1/chat/completions', methods=['POST'])
@app.route('/chat/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
def chat_completions():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
@ -177,20 +179,22 @@ def chat_completions():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
yield 'data: {}\n'.format(json.dumps(resData))
yield 'data: {}\n\n'.format(json.dumps(resData))
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream')
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
@app.route('/completions', methods=['POST'])
@app.route('/v1/completions', methods=['POST'])
@app.route('/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/completions', methods=['POST', 'OPTIONS'])
def completion():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
@ -216,8 +220,8 @@ def completion():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream')
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
if __name__ == '__main__':
app.run(args.host, port=args.port)

View file

@ -155,15 +155,23 @@ struct task_server {
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
@ -406,6 +414,9 @@ struct llama_client_slot
double t_prompt_processing; // ms
double t_token_generation; // ms
// multitasks
int multitask_id = -1;
void reset() {
num_prompt_tokens = 0;
generated_text = "";
@ -529,7 +540,8 @@ struct llama_server_context
std::vector<task_server> queue_tasks;
std::vector<task_result> queue_results;
std::mutex mutex_tasks;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::mutex mutex_results;
~llama_server_context()
@ -1112,17 +1124,40 @@ struct llama_server_context
return slot.images.size() > 0;
}
void send_error(int id, std::string error)
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = id;
res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = false;
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
}
void add_multi_task(int id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
json get_model_props()
{
return get_formated_generation(slots[0]);
@ -1167,6 +1202,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = false;
@ -1206,6 +1242,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
@ -1251,6 +1288,12 @@ struct llama_server_context
res.result_json["model"] = slot.oaicompat_model;
}
// parent multitask, if any, needs to be updated
if (slot.multitask_id != -1)
{
update_multi_task(slot.multitask_id, slot.task_id, res);
}
queue_results.push_back(res);
}
@ -1259,6 +1302,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
@ -1285,9 +1329,9 @@ struct llama_server_context
queue_results.push_back(res);
}
int request_completion(json data, bool infill, bool embedding)
int request_completion(json data, bool infill, bool embedding, int multitask_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.target_id = 0;
@ -1295,6 +1339,16 @@ struct llama_server_context
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.at("prompt").size() > 1)
{
lock.unlock(); // entering new func scope
return split_multiprompt_task(task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
return task.id;
}
@ -1313,8 +1367,17 @@ struct llama_server_context
for (int i = 0; i < (int) queue_results.size(); i++)
{
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (queue_results[i].multitask_id == task_id)
{
update_multi_task(task_id, queue_results[i].id, queue_results[i]);
queue_results.erase(queue_results.begin() + i);
continue;
}
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
@ -1404,6 +1467,27 @@ struct llama_server_context
queue_tasks.push_back(task);
}
int split_multiprompt_task(task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
int multitask_id = id_gen++;
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++)
{
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
}
// queue up the multitask so we can track its subtask progression
add_multi_task(multitask_id, subtask_ids);
return multitask_id;
}
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
@ -1419,7 +1503,7 @@ struct llama_server_context
{
LOG_TEE("slot unavailable\n");
// send error result
send_error(task.id, "slot unavailable");
send_error(task, "slot unavailable");
return;
}
@ -1433,11 +1517,12 @@ struct llama_server_context
slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
slot->multitask_id = task.multitask_id;
if (!launch_slot_with_data(slot, task.data))
{
// send error result
send_error(task.id, "internal_error");
send_error(task, "internal_error");
break;
}
} break;
@ -1453,6 +1538,38 @@ struct llama_server_context
} break;
}
}
// remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_result aggregate_result;
aggregate_result.id = queue_iterator->id;
aggregate_result.stop = true;
aggregate_result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (auto& subres : queue_iterator->results)
{
result_jsons.push_back(subres.result_json);
aggregate_result.error = aggregate_result.error && subres.error;
}
aggregate_result.result_json = json{ "results", result_jsons };
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
}
bool update_slots() {
@ -1844,6 +1961,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf("\n");
}
@ -2198,6 +2316,11 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.mmproj = argv[i];
}
else if (arg == "--log-disable")
{
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -2596,7 +2719,7 @@ int main(int argc, char **argv)
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false, false);
const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@ -2685,7 +2808,7 @@ int main(int argc, char **argv)
{
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false);
const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
@ -2754,7 +2877,7 @@ int main(int argc, char **argv)
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true, false);
const int task_id = llama.request_completion(data, true, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@ -2858,7 +2981,7 @@ int main(int argc, char **argv)
{
prompt = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true);
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json");
});

View file

@ -0,0 +1,8 @@
# llama.cpp/examples/speculative
Demonstartion of speculative decoding and tree-based speculative decoding techniques
More info:
- https://github.com/ggerganov/llama.cpp/pull/2926
- https://github.com/ggerganov/llama.cpp/pull/3624

View file

@ -137,7 +137,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
size_t cur_max = (char*)addr - (char*)alloc->data + size;
size_t cur_max = (char*)addr - (char*)alloc->base + size;
if (cur_max > alloc->max_size) {
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {

View file

@ -443,6 +443,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_CLAMP_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
#define CUDA_ALIBI_BLOCK_SIZE 32
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256
@ -501,6 +502,31 @@ static size_t g_scratch_offset = 0;
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
}
return x;
}
static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -577,15 +603,6 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] * x[i];
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}
template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
@ -624,14 +641,6 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
}
}
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
@ -4717,45 +4726,74 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
}
// the CUDA soft max implementation differs from the CPU implementation
// instead of doubles floats are used
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int block_size = blockDim.y;
const int tid = threadIdx.y;
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = blockDim.x;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
__shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE/WARP_SIZE];
float max_val = -INFINITY;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
max_val = max(max_val, x[i]);
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
}
// find the max value in the block
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
max_val = max(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32));
max_val = warp_reduce_max(max_val);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = -INFINITY;
}
__syncthreads();
if (lane_id == 0) {
buf[warp_id] = max_val;
}
__syncthreads();
max_val = buf[lane_id];
max_val = warp_reduce_max(max_val);
}
float tmp = 0.f;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
const float val = expf(x[i] - max_val);
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
tmp += val;
dst[i] = val;
dst[ix] = val;
}
// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = 0.f;
}
__syncthreads();
if (lane_id == 0) {
buf[warp_id] = tmp;
}
__syncthreads();
tmp = buf[lane_id];
tmp = warp_reduce_sum(tmp);
}
const float inv_tmp = 1.f / tmp;
for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col;
const int i = rowx*ncols + col;
dst[i] *= inv_tmp;
}
}
@ -5792,10 +5830,12 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
}
static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
const dim3 block_dims(1, WARP_SIZE, 1);
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
}
static void im2col_f32_f16_cuda(const float * x, half * dst,
@ -6846,14 +6886,18 @@ inline void ggml_cuda_op_soft_max(
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
soft_max_f32_cuda(src0_dd, dst_dd, ne00, nrows, main_stream);
float scale = 1.0f;
memcpy(&scale, dst->op_params, sizeof(float));
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_scale(

View file

@ -1028,20 +1028,27 @@ void ggml_metal_graph_compute(
int nth = 32; // SIMD width
if (ne00%4 == 0) {
while (nth < ne00/4 && nth < 256) {
nth *= 2;
}
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else {
do {
while (nth < ne00 && nth < 1024) {
nth *= 2;
} while (nth <= ne00 && nth <= 1024);
nth /= 2;
}
[encoder setComputePipelineState:ctx->pipeline_soft_max];
}
const float scale = ((float *) dst->op_params)[0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
@ -1351,7 +1358,11 @@ void ggml_metal_graph_compute(
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int nth = MIN(512, ne00);
int nth = 32; // SIMD width
while (nth < ne00/4 && nth < 1024) {
nth *= 2;
}
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1359,7 +1370,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);

View file

@ -39,6 +39,8 @@ typedef struct {
int8_t qs[QK8_0]; // quants
} block_q8_0;
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
// general-purpose kernel for addition of two tensors
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
// cons: not very efficient
@ -180,10 +182,12 @@ kernel void kernel_gelu(
kernel void kernel_soft_max(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
@ -195,72 +199,76 @@ kernel void kernel_soft_max(
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device const float * pmask = src1 ? src1 + i01*ne00 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max
float lmax = tpitg < ne00 ? psrc0[tpitg] : -INFINITY;
float lmax = -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
}
float max = simd_max(lmax);
// find the max value in the block
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max;
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp(psrc0[i00] - max);
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// wish to compute it twice.
pdst[i00] = exp_psrc0;
}
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
sum = buf[tiisg];
sum = simd_sum(sum);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] /= sum;
pdst[i00] *= inv_sum;
}
}
kernel void kernel_soft_max_4(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
@ -272,63 +280,67 @@ kernel void kernel_soft_max_4(
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float4 * pmask = src1 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max
float4 lmax4 = tpitg < ne00/4 ? psrc4[tpitg] : -INFINITY;
float4 lmax4 = -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]);
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
}
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max = simd_max(lmax);
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max;
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp(psrc4[i00] - max);
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
sum = buf[tiisg];
sum = simd_sum(sum);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] /= sum;
pdst4[i00] *= inv_sum;
}
}
@ -435,14 +447,13 @@ kernel void kernel_rms_norm(
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
device const float * x_scalar = (device const float *) x;
float4 sumf = 0;
float all_sum = 0;
@ -453,40 +464,30 @@ kernel void kernel_rms_norm(
}
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
sum[sgitg] = all_sum;
buf[sgitg] = all_sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
}
if (tpitg == 0) {
for (int i = 4 * (ne00 / 4); i < ne00; i++) {
sum[0] += x_scalar[i];
}
sum[0] /= ne00;
all_sum = buf[tiisg];
all_sum = simd_sum(all_sum);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
const float mean = all_sum/ne00;
const float scale = 1.0f/sqrt(mean + eps);
device float4 * y = (device float4 *) (dst + tgpig*ne00);
device float * y_scalar = (device float *) y;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
if (tpitg == 0) {
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
y_scalar[i00] = x_scalar[i00] * scale;
}
}
}
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
@ -576,7 +577,6 @@ inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thre
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
//Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not
// giard against the number of rows not being divisible by

View file

@ -1,20 +1,18 @@
#include "ggml.h"
#include "ggml-opencl.h"
#include <array>
#include <atomic>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <sstream>
#include <vector>
#include <limits>
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "ggml.h"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

73
ggml.c
View file

@ -4826,7 +4826,17 @@ struct ggml_tensor * ggml_diag_mask_zero_inplace(
static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(ggml_can_repeat_rows(mask, a));
}
bool is_node = false;
if (a->grad) {
@ -4835,9 +4845,13 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
float params[] = { scale };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = mask;
return result;
}
@ -4845,13 +4859,21 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, false);
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
}
struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, true);
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
}
struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale) {
return ggml_soft_max_impl(ctx, a, mask, scale, false);
}
// ggml_soft_max_back
@ -10551,20 +10573,25 @@ static void ggml_compute_forward_diag_mask_zero(
static void ggml_compute_forward_soft_max_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
float scale = 1.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
const int64_t ne11 = src1 ? src1->ne[1] : 1;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
@ -10575,29 +10602,40 @@ static void ggml_compute_forward_soft_max_f32(
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
for (int i1 = ir0; i1 < ir1; i1++) {
float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale);
if (mp) {
ggml_vec_acc_f32(nc, wp, mp);
}
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(sp[i]));
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, sp);
ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = 0.0;
uint16_t scvt;
for (int i = 0; i < nc; i++) {
if (sp[i] == -INFINITY) {
if (wp[i] == -INFINITY) {
dp[i] = 0.0f;
} else {
// const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
// const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
sum += (ggml_float)val;
@ -10622,11 +10660,12 @@ static void ggml_compute_forward_soft_max_f32(
static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_f32(params, src0, dst);
ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
} break;
default:
{
@ -13863,7 +13902,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_SOFT_MAX:
{
ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SOFT_MAX_BACK:
{
@ -15899,6 +15938,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
case GGML_OP_SOFT_MAX:
{
n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);

13
ggml.h
View file

@ -244,11 +244,10 @@
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
fflush(stderr); \
fflush(stdout); \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_print_backtrace(); \
exit(1); \
abort(); \
} \
} while (0)
@ -1283,6 +1282,14 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// fused soft_max(a*scale + mask)
// mask is optional
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale);
GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,

View file

@ -92,6 +92,7 @@ class MODEL_ARCH(IntEnum):
BERT = auto()
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
class MODEL_TENSOR(IntEnum):
@ -132,6 +133,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -317,6 +319,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [
# TODO
],
@ -336,6 +352,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.PERSIMMON: [
MODEL_TENSOR.ROPE_FREQS,
],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
#

View file

@ -10,7 +10,7 @@ class TensorNameMap:
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 gpt-j mpt refact
"transformer.wte", # gpt2 gpt-j mpt refact qwen
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf
@ -38,7 +38,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"output", # llama-pth bloom
"word_embeddings_for_head", # persimmon
),
@ -51,7 +51,7 @@ class TensorNameMap:
"norm", # llama-pth
"embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt
"ln_f", # refact bloom
"ln_f", # refact bloom qwen
"language_model.encoder.final_layernorm", # persimmon
),
@ -65,7 +65,7 @@ class TensorNameMap:
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
@ -85,7 +85,7 @@ class TensorNameMap:
# Attention query-key-value
MODEL_TENSOR.ATTN_QKV: (
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
"transformer.h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
"transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom
@ -119,7 +119,7 @@ class TensorNameMap:
# Attention output
MODEL_TENSOR.ATTN_OUT: (
"gpt_neox.layers.{bid}.attention.dense", # gptneox
"transformer.h.{bid}.attn.c_proj", # gpt2 refact
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
@ -139,7 +139,7 @@ class TensorNameMap:
# Feed-forward norm
MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
"transformer.h.{bid}.ln_2", # gpt2 refact
"transformer.h.{bid}.ln_2", # gpt2 refact qwen
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
@ -161,18 +161,20 @@ class TensorNameMap:
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
),
# Feed-forward gate
MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
),
# Feed-forward down
MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom

278
llama.cpp
View file

@ -46,7 +46,6 @@
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#include <algorithm>
@ -193,6 +192,7 @@ enum llm_arch {
LLM_ARCH_REFACT,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_UNKNOWN,
};
@ -209,6 +209,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
};
enum llm_kv {
@ -519,6 +520,22 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_QWEN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_UNKNOWN,
@ -1249,6 +1266,9 @@ struct llama_layer {
struct ggml_tensor * wqkv;
// attention bias
struct ggml_tensor * bq;
struct ggml_tensor * bk;
struct ggml_tensor * bv;
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
@ -1971,10 +1991,13 @@ struct llama_model_loader {
return tensor;
}
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend, bool required = true) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
if (cur == NULL) {
if (!required) {
return NULL;
}
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
@ -2348,6 +2371,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_QWEN:
{
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@ -2783,6 +2815,12 @@ static void llm_load_tensors(
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
// optional bias tensors
layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend, false);
layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend, false);
layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend, false);
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend, false);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
@ -2792,8 +2830,13 @@ static void llm_load_tensors(
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) +
(layer.bq ? ggml_nbytes(layer.bq) : 0) +
(layer.bk ? ggml_nbytes(layer.bk) : 0) +
(layer.bv ? ggml_nbytes(layer.bv) : 0) +
(layer.bo ? ggml_nbytes(layer.bo) : 0) +
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
}
}
} break;
@ -3311,6 +3354,71 @@ static void llm_load_tensors(
}
}
} break;
case LLM_ARCH_QWEN:
{
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
{
ggml_backend_type backend_norm;
ggml_backend_type backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = llama_backend_offload;
#else
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff / 2;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd * 3}, backend_split);
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd * 3}, backend);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
}
}
} break;
default:
throw std::runtime_error("unknown architecture");
@ -3705,6 +3813,8 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
if (max_alibi_bias > 0.0f) {
// temporary branch until we figure out how to handle ggml_alibi through ggml_add
kq = ggml_scale(ctx, kq, kq_scale);
cb(kq, "kq_scaled", il);
@ -3721,6 +3831,10 @@ static struct ggml_tensor * llm_build_kqv(
kq = ggml_soft_max(ctx, kq);
cb(kq, "kq_soft_max", il);
} else {
kq = ggml_soft_max_ext(ctx, kq, kq_mask, 1.0f/sqrtf(float(n_embd_head)));
cb(kq, "kq_soft_max_ext", il);
}
// split cached v into n_head heads
struct ggml_tensor * v =
@ -3886,12 +4000,24 @@ struct llm_build_context {
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
@ -3910,7 +4036,7 @@ struct llm_build_context {
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
model.layers[il].wo, NULL,
model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}
@ -4903,6 +5029,121 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_qwen() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos, "inp_pos", -1);
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it wil be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed
if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
// using mode = 2 for neox mode
Qcur = ggml_rope_custom(
ctx0, Qcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, Kcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
model.layers[il].wo, NULL,
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
};
//
@ -5042,6 +5283,7 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
{ "kq_scaled_alibi", OFFLOAD_FUNC_KQ },
{ "kq_masked", OFFLOAD_FUNC_KQ },
{ "kq_soft_max", OFFLOAD_FUNC_V },
{ "kq_soft_max_ext", OFFLOAD_FUNC_V },
{ "v", OFFLOAD_FUNC_V },
{ "kqv", OFFLOAD_FUNC_V },
{ "kqv_merged", OFFLOAD_FUNC_V },
@ -5376,6 +5618,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_stablelm();
} break;
case LLM_ARCH_QWEN:
{
result = llm.build_qwen();
} break;
default:
GGML_ASSERT(false);
}
@ -7027,6 +7273,7 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
@ -7648,18 +7895,21 @@ static void llama_convert_tensor_internal(
return;
}
auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
auto block_size_bytes = ggml_type_size(tensor->type);
size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
auto nblocks = nelements / block_size;
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
size_t nblocks = nelements / block_size;
size_t blocks_per_thread = nblocks / nthread;
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
size_t in_buff_offs = 0;
size_t out_buff_offs = 0;
for (int tnum = 0; tnum < nthread; tnum++) {
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {

View file

@ -0,0 +1 @@
You are a helpful assistant.

View file

@ -0,0 +1,3 @@
-r requirements.txt
torch==2.1.1
transformers==4.35.2