ggml, llama : avoid heavy V transpose + improvements (#775)
ggml : - added ggml_view_3d() - ggml_view_tensor() now inherits the stride too - reimplement ggml_cpy() to account for dst stride - no longer require tensor->data to be memory aligned llama : - compute RoPE on 32-bit tensors (should be more accurate) - store RoPE-ed K in the KV cache - store transposed V in the KV cache (significant speed-up) - avoid unnecessary Q copy
This commit is contained in:
parent
3416298929
commit
986b6ce9f9
3 changed files with 222 additions and 166 deletions
309
ggml.c
309
ggml.c
|
@ -3219,7 +3219,8 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
|||
/*.pad =*/ { 0 },
|
||||
};
|
||||
|
||||
ggml_assert_aligned(result->data);
|
||||
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
|
||||
//ggml_assert_aligned(result->data);
|
||||
|
||||
for (int i = 0; i < n_dims; i++) {
|
||||
result->ne[i] = ne[i];
|
||||
|
@ -3620,7 +3621,14 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
|
|||
struct ggml_tensor * ggml_view_tensor(
|
||||
struct ggml_context * ctx,
|
||||
const struct ggml_tensor * src) {
|
||||
return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
|
||||
|
||||
result->nb[0] = src->nb[0];
|
||||
result->nb[1] = src->nb[1];
|
||||
result->nb[2] = src->nb[2];
|
||||
result->nb[3] = src->nb[3];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -4510,6 +4518,37 @@ struct ggml_tensor * ggml_view_2d(
|
|||
return result;
|
||||
}
|
||||
|
||||
// ggml_view_3d
|
||||
|
||||
struct ggml_tensor * ggml_view_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t offset) {
|
||||
if (a->grad) {
|
||||
GGML_ASSERT(false); // gradient propagation is not supported
|
||||
}
|
||||
|
||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = nb2;
|
||||
result->nb[3] = result->nb[2]*ne2;
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = NULL;
|
||||
result->src0 = a;
|
||||
result->src1 = NULL; // TODO: maybe store the offset here?
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_permute
|
||||
|
||||
struct ggml_tensor * ggml_permute(
|
||||
|
@ -4845,7 +4884,6 @@ static void ggml_compute_forward_dup_f16(
|
|||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(params->ith == 0);
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
|
@ -4862,85 +4900,96 @@ static void ggml_compute_forward_dup_f16(
|
|||
const size_t nb02 = src0->nb[2];
|
||||
const size_t nb03 = src0->nb[3];
|
||||
|
||||
if (ggml_is_contiguous(src0) && src0->type == dst->type) {
|
||||
const size_t nb0 = dst->nb[0];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
const size_t nb2 = dst->nb[2];
|
||||
const size_t nb3 = dst->nb[3];
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
||||
memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
|
||||
return;
|
||||
}
|
||||
|
||||
if (src0->nb[0] == sizeof(ggml_fp16_t)) {
|
||||
if (dst->type == GGML_TYPE_F16) {
|
||||
size_t id = 0;
|
||||
const size_t rs = ne00*nb00;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
char * dst_ptr = (char *) dst->data + id*rs;
|
||||
|
||||
memcpy(dst_ptr, src0_ptr, rs);
|
||||
|
||||
id++;
|
||||
}
|
||||
if (src0->type == dst->type &&
|
||||
src0->ne[0] == dst->ne[0] &&
|
||||
src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
|
||||
// copy by rows
|
||||
const size_t rs = ne00*nb00;
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
memcpy(
|
||||
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||||
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||||
rs);
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
||||
|
||||
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
||||
id++;
|
||||
// dst counters
|
||||
int64_t i10 = 0;
|
||||
int64_t i11 = 0;
|
||||
int64_t i12 = 0;
|
||||
int64_t i13 = 0;
|
||||
|
||||
if (dst->type == GGML_TYPE_F16) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
|
||||
|
||||
if (++i10 == ne00) {
|
||||
i10 = 0;
|
||||
if (++i11 == ne01) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne02) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne03) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F32) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
||||
|
||||
if (++i10 == ne00) {
|
||||
i10 = 0;
|
||||
if (++i11 == ne01) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne02) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne03) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
} else {
|
||||
//printf("%s: this is not optimal - fix me\n", __func__);
|
||||
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
||||
id++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F16) {
|
||||
size_t id = 0;
|
||||
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = *src0_ptr;
|
||||
id++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4949,7 +4998,6 @@ static void ggml_compute_forward_dup_f32(
|
|||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(params->ith == 0);
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
|
@ -4966,85 +5014,76 @@ static void ggml_compute_forward_dup_f32(
|
|||
const size_t nb02 = src0->nb[2];
|
||||
const size_t nb03 = src0->nb[3];
|
||||
|
||||
if (ggml_is_contiguous(src0) && src0->type == dst->type) {
|
||||
const size_t nb0 = dst->nb[0];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
const size_t nb2 = dst->nb[2];
|
||||
const size_t nb3 = dst->nb[3];
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
||||
memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
|
||||
return;
|
||||
}
|
||||
|
||||
if (src0->nb[0] == sizeof(float)) {
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
const size_t rs = ne00*nb00;
|
||||
// dst counters
|
||||
int64_t i10 = 0;
|
||||
int64_t i11 = 0;
|
||||
int64_t i12 = 0;
|
||||
int64_t i13 = 0;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
char * dst_ptr = (char *) dst->data + id*rs;
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
memcpy(dst_ptr, src0_ptr, rs);
|
||||
memcpy(dst_ptr, src0_ptr, sizeof(float));
|
||||
|
||||
id++;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F16) {
|
||||
size_t id = 0;
|
||||
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
||||
id++;
|
||||
if (++i10 == dst->ne[0]) {
|
||||
i10 = 0;
|
||||
if (++i11 == dst->ne[1]) {
|
||||
i11 = 0;
|
||||
if (++i12 == dst->ne[2]) {
|
||||
i12 = 0;
|
||||
if (++i13 == dst->ne[3]) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F16) {
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
|
||||
|
||||
if (++i10 == dst->ne[0]) {
|
||||
i10 = 0;
|
||||
if (++i11 == dst->ne[1]) {
|
||||
i11 = 0;
|
||||
if (++i12 == dst->ne[2]) {
|
||||
i12 = 0;
|
||||
if (++i13 == dst->ne[3]) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
} else {
|
||||
//printf("%s: this is not optimal - fix me\n", __func__);
|
||||
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = *src0_ptr;
|
||||
id++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_F16) {
|
||||
size_t id = 0;
|
||||
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
||||
id++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue