diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 7d81a69ec..635b2bd61 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1522,16 +1522,16 @@ class DbrxModel(Model): n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] n_embd = self.hparams["d_model"] - # Specific behavior for experts tensors: suffix .weight, reshape to 3D + # Specific behavior for experts tensors: suffix .weight, reshape to 3D and transpose # orginal implementation expects (n_expert, n_ff, n_embd) - exp_tensor_names = {"ffn.experts.mlp.v1", # LLM_TENSOR_FFN_GATE_EXPS ne {n_embd, n_ff, n_expert} - "ffn.experts.mlp.w2", # LLM_TENSOR_FFN_DOWN_EXPS ne {n_ff, n_embd, n_expert} - "ffn.experts.mlp.w1"} # LLM_TENSOR_FFN_UP_EXPS ne {n_embd, n_ff, n_expert } + exp_tensor_names = {"ffn.experts.mlp.v1": (0, 1, 2), # LLM_TENSOR_FFN_GATE_EXPS(n_embd, n_ff, n_expert) + "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS(n_ff, n_embd, n_expert) + "ffn.experts.mlp.w1": (0, 1, 2)} # LLM_TENSOR_FFN_UP_EXPS (n_embd, n_ff, n_expert) experts = False - for exp_tensor_name in exp_tensor_names: + for exp_tensor_name in exp_tensor_names.keys(): if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: experts = True - data_torch = data_torch.view(n_expert, n_ff, n_embd) + data_torch = data_torch.view(n_expert, n_ff, n_embd).permute(*exp_tensor_names[exp_tensor_name]) break old_dtype = data_torch.dtype