llava : style
This commit is contained in:
parent
a20c071d93
commit
997dd1fdf7
4 changed files with 140 additions and 137 deletions
|
@ -70,29 +70,29 @@ static std::string format(const char * fmt, ...) {
|
||||||
// key constants
|
// key constants
|
||||||
//
|
//
|
||||||
|
|
||||||
#define KEY_FTYPE "general.file_type"
|
#define KEY_FTYPE "general.file_type"
|
||||||
#define KEY_NAME "general.name"
|
#define KEY_NAME "general.name"
|
||||||
#define KEY_DESCRIPTION "general.description"
|
#define KEY_DESCRIPTION "general.description"
|
||||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||||
#define KEY_USE_GELU "clip.use_gelu"
|
#define KEY_USE_GELU "clip.use_gelu"
|
||||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||||
|
|
||||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||||
|
|
||||||
|
|
||||||
|
@ -100,26 +100,26 @@ static std::string format(const char * fmt, ...) {
|
||||||
// tensor name constants
|
// tensor name constants
|
||||||
//
|
//
|
||||||
|
|
||||||
#define TN_TOKEN_EMBD "%s.token_embd.weight"
|
#define TN_TOKEN_EMBD "%s.token_embd.weight"
|
||||||
#define TN_POS_EMBD "%s.position_embd.weight"
|
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||||
#define TN_CLASS_EMBD "v.class_embd"
|
#define TN_CLASS_EMBD "v.class_embd"
|
||||||
#define TN_PATCH_EMBD "v.patch_embd.weight"
|
#define TN_PATCH_EMBD "v.patch_embd.weight"
|
||||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||||
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
||||||
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
||||||
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
||||||
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
||||||
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
||||||
#define TN_LN_PRE "%s.pre_ln.%s"
|
#define TN_LN_PRE "%s.pre_ln.%s"
|
||||||
#define TN_LN_POST "%s.post_ln.%s"
|
#define TN_LN_POST "%s.post_ln.%s"
|
||||||
#define TN_TEXT_PROJ "text_projection.weight"
|
#define TN_TEXT_PROJ "text_projection.weight"
|
||||||
#define TN_VIS_PROJ "visual_projection.weight"
|
#define TN_VIS_PROJ "visual_projection.weight"
|
||||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||||
|
|
||||||
|
|
||||||
enum projector_type {
|
enum projector_type {
|
||||||
|
@ -130,8 +130,8 @@ enum projector_type {
|
||||||
};
|
};
|
||||||
|
|
||||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -191,7 +191,6 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||||
std::string result;
|
std::string result;
|
||||||
for (size_t pos = 0; ; pos += search.length()) {
|
for (size_t pos = 0; ; pos += search.length()) {
|
||||||
|
@ -279,7 +278,6 @@ struct clip_hparams {
|
||||||
|
|
||||||
int32_t image_grid_pinpoints[32];
|
int32_t image_grid_pinpoints[32];
|
||||||
int32_t image_crop_resolution;
|
int32_t image_crop_resolution;
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
struct clip_layer {
|
struct clip_layer {
|
||||||
|
@ -333,6 +331,7 @@ struct clip_vision_model {
|
||||||
struct ggml_tensor * mm_0_b = NULL;
|
struct ggml_tensor * mm_0_b = NULL;
|
||||||
struct ggml_tensor * mm_2_w = NULL;
|
struct ggml_tensor * mm_2_w = NULL;
|
||||||
struct ggml_tensor * mm_2_b = NULL;
|
struct ggml_tensor * mm_2_b = NULL;
|
||||||
|
|
||||||
struct ggml_tensor * image_newline = NULL;
|
struct ggml_tensor * image_newline = NULL;
|
||||||
|
|
||||||
// Yi type models with mlp+normalization projection
|
// Yi type models with mlp+normalization projection
|
||||||
|
@ -389,9 +388,10 @@ struct clip_ctx {
|
||||||
std::vector<uint8_t> buf_compute_meta;
|
std::vector<uint8_t> buf_compute_meta;
|
||||||
|
|
||||||
// memory buffers to evaluate the model
|
// memory buffers to evaluate the model
|
||||||
ggml_backend_buffer_t params_buffer = NULL;
|
ggml_backend_buffer_t params_buffer = NULL;
|
||||||
ggml_backend_buffer_t compute_buffer = NULL;
|
ggml_backend_buffer_t compute_buffer = NULL;
|
||||||
ggml_backend_t backend = NULL;
|
|
||||||
|
ggml_backend_t backend = NULL;
|
||||||
ggml_gallocr_t compute_alloc = NULL;
|
ggml_gallocr_t compute_alloc = NULL;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -404,19 +404,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||||
const auto & model = ctx->vision_model;
|
const auto & model = ctx->vision_model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
const int image_size = hparams.image_size;
|
const int image_size = hparams.image_size;
|
||||||
const int patch_size = hparams.patch_size;
|
const int patch_size = hparams.patch_size;
|
||||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||||
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
||||||
const int num_positions = num_patches + 1;
|
const int num_positions = num_patches + 1;
|
||||||
const int hidden_size = hparams.hidden_size;
|
const int hidden_size = hparams.hidden_size;
|
||||||
const int n_head = hparams.n_head;
|
const int n_head = hparams.n_head;
|
||||||
const int d_head = hidden_size / n_head;
|
const int d_head = hidden_size / n_head;
|
||||||
const int n_layer = hparams.n_layer;
|
const int n_layer = hparams.n_layer;
|
||||||
//const int n_intermediate = hparams.n_intermediate;
|
const float eps = hparams.eps;
|
||||||
//const int projection_dim = hparams.projection_dim;
|
|
||||||
const float eps = hparams.eps;
|
const int batch_size = imgs->size;
|
||||||
int batch_size = imgs->size;
|
|
||||||
if (ctx->has_llava_projector) {
|
if (ctx->has_llava_projector) {
|
||||||
GGML_ASSERT(batch_size == 1);
|
GGML_ASSERT(batch_size == 1);
|
||||||
}
|
}
|
||||||
|
@ -816,10 +816,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
if (idx != -1) {
|
if (idx != -1) {
|
||||||
const std::string proj_type = gguf_get_val_str(ctx, idx);
|
const std::string proj_type = gguf_get_val_str(ctx, idx);
|
||||||
new_clip->proj_type = clip_projector_type_from_string(proj_type);
|
new_clip->proj_type = clip_projector_type_from_string(proj_type);
|
||||||
}
|
} else {
|
||||||
else {
|
|
||||||
new_clip->proj_type = PROJECTOR_TYPE_MLP;
|
new_clip->proj_type = PROJECTOR_TYPE_MLP;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
|
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
|
||||||
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
|
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
|
||||||
|
@ -944,6 +944,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
|
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
|
||||||
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
|
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
|
||||||
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
|
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
|
||||||
|
|
||||||
try {
|
try {
|
||||||
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
|
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
|
||||||
int n = gguf_get_arr_n(ctx, idx);
|
int n = gguf_get_arr_n(ctx, idx);
|
||||||
|
@ -956,23 +957,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
} catch (std::runtime_error & e) {
|
} catch (std::runtime_error & e) {
|
||||||
hparams.image_grid_pinpoints[0]=0;
|
hparams.image_grid_pinpoints[0]=0;
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
|
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
|
||||||
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
|
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
|
||||||
} catch (std::runtime_error & e) {
|
} catch (std::runtime_error & e) {
|
||||||
strcpy(hparams.mm_patch_merge_type, "flat");
|
strcpy(hparams.mm_patch_merge_type, "flat");
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
|
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
|
||||||
}
|
} catch(const std::exception& e) {
|
||||||
catch(const std::exception& e) {
|
|
||||||
hparams.image_crop_resolution = hparams.image_size;
|
hparams.image_crop_resolution = hparams.image_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
|
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
|
||||||
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
|
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
|
||||||
|
|
||||||
const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
|
const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
|
||||||
const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
|
const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
|
||||||
|
|
||||||
for (int i = 0; i < 3; ++i) {
|
for (int i = 0; i < 3; ++i) {
|
||||||
new_clip->image_mean[i] = mean_data[i];
|
new_clip->image_mean[i] = mean_data[i];
|
||||||
new_clip->image_std[i] = std_data[i];
|
new_clip->image_std[i] = std_data[i];
|
||||||
|
@ -998,16 +1002,14 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
printf("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||||
|
|
||||||
}
|
}
|
||||||
try
|
|
||||||
{
|
try {
|
||||||
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
|
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
|
||||||
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
||||||
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
||||||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||||
}
|
} catch(const std::exception& e) {
|
||||||
catch(const std::exception& e)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "%s: failed to load vision model tensors\n", __func__);
|
fprintf(stderr, "%s: failed to load vision model tensors\n", __func__);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1039,40 +1041,39 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
||||||
// fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__);
|
// fprintf(stderr, "%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { }
|
||||||
}
|
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
|
||||||
// MobileVLM projection
|
// MobileVLM projection
|
||||||
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
||||||
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
|
vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
|
||||||
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
|
vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
|
||||||
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
|
vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
|
||||||
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
|
vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
|
||||||
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
|
vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
|
||||||
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
|
vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
|
||||||
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
|
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
|
||||||
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
|
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
|
||||||
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
|
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
|
||||||
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
|
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
|
||||||
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
|
vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
|
||||||
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
|
vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
|
||||||
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
|
vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
|
||||||
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
|
vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
|
||||||
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
|
vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
|
||||||
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
|
vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
|
||||||
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
|
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
|
||||||
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
|
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
|
||||||
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
|
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
|
||||||
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
|
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
|
||||||
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
|
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
|
||||||
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
|
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
|
||||||
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
|
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
|
||||||
}
|
} else {
|
||||||
else {
|
|
||||||
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
||||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||||
}
|
}
|
||||||
|
|
||||||
vision_model.layers.resize(hparams.n_layer);
|
vision_model.layers.resize(hparams.n_layer);
|
||||||
|
|
||||||
for (int il = 0; il < hparams.n_layer; ++il) {
|
for (int il = 0; il < hparams.n_layer; ++il) {
|
||||||
auto & layer = vision_model.layers[il];
|
auto & layer = vision_model.layers[il];
|
||||||
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
|
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
|
||||||
|
@ -1412,7 +1413,6 @@ static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &imag
|
||||||
image_output = std::move(padded_image);
|
image_output = std::move(padded_image);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||||
*
|
*
|
||||||
|
@ -1446,7 +1446,6 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
|
||||||
return best_fit;
|
return best_fit;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
|
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
|
||||||
std::vector<clip_image_u8*> patches;
|
std::vector<clip_image_u8*> patches;
|
||||||
int width = image.nx;
|
int width = image.nx;
|
||||||
|
@ -1472,7 +1471,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
||||||
|
|
||||||
#ifdef CLIP_DEBUG_FUNCTIONS
|
#ifdef CLIP_DEBUG_FUNCTIONS
|
||||||
// debug function to convert f32 to u8
|
// debug function to convert f32 to u8
|
||||||
void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
|
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
|
||||||
dst.nx = src.nx;
|
dst.nx = src.nx;
|
||||||
dst.ny = src.ny;
|
dst.ny = src.ny;
|
||||||
dst.buf.resize(3 * src.nx * src.ny);
|
dst.buf.resize(3 * src.nx * src.ny);
|
||||||
|
@ -1532,8 +1531,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (params.image_grid_pinpoints[0] != 0)
|
if (params.image_grid_pinpoints[0] != 0) {
|
||||||
{
|
|
||||||
// "spatial_unpad" with "anyres" processing for llava-1.6
|
// "spatial_unpad" with "anyres" processing for llava-1.6
|
||||||
std::vector<std::pair<int, int>> possible_resolutions;
|
std::vector<std::pair<int, int>> possible_resolutions;
|
||||||
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||||||
|
@ -1656,6 +1654,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
|
||||||
|
return ctx->vision_model.image_newline;
|
||||||
|
}
|
||||||
|
|
||||||
void clip_free(clip_ctx * ctx) {
|
void clip_free(clip_ctx * ctx) {
|
||||||
ggml_free(ctx->ctx_data);
|
ggml_free(ctx->ctx_data);
|
||||||
gguf_free(ctx->ctx_gguf);
|
gguf_free(ctx->ctx_gguf);
|
||||||
|
@ -1687,6 +1689,18 @@ const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
|
||||||
return ctx->vision_model.hparams.image_grid_pinpoints;
|
return ctx->vision_model.hparams.image_grid_pinpoints;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int clip_n_patches(const struct clip_ctx * ctx) {
|
||||||
|
const auto & params = ctx->vision_model.hparams;
|
||||||
|
|
||||||
|
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
||||||
|
|
||||||
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
|
n_patches /= 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
return n_patches;
|
||||||
|
}
|
||||||
|
|
||||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||||
if (!ctx->has_vision_encoder) {
|
if (!ctx->has_vision_encoder) {
|
||||||
printf("This gguf file seems to have no vision encoder\n");
|
printf("This gguf file seems to have no vision encoder\n");
|
||||||
|
@ -1706,7 +1720,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||||
}
|
}
|
||||||
|
|
||||||
int batch_size = imgs->size;
|
int batch_size = imgs->size;
|
||||||
if(ctx->has_llava_projector) {
|
if (ctx->has_llava_projector) {
|
||||||
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1717,9 +1731,10 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||||
// set inputs
|
// set inputs
|
||||||
const auto & model = ctx->vision_model;
|
const auto & model = ctx->vision_model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
const int image_size = hparams.image_size;
|
|
||||||
const int patch_size = hparams.patch_size;
|
const int image_size = hparams.image_size;
|
||||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
const int patch_size = hparams.patch_size;
|
||||||
|
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||||
const int num_positions = num_patches + 1;
|
const int num_positions = num_patches + 1;
|
||||||
|
|
||||||
{
|
{
|
||||||
|
@ -1794,11 +1809,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||||
|
|
||||||
// copy the embeddings to the location passed by the user
|
// copy the embeddings to the location passed by the user
|
||||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
|
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
|
||||||
|
|
||||||
ggml_type type = GGML_TYPE_Q4_1;
|
ggml_type type = GGML_TYPE_Q4_1;
|
||||||
|
|
||||||
assert(itype < GGML_TYPE_COUNT);
|
assert(itype < GGML_TYPE_COUNT);
|
||||||
|
@ -1987,26 +2002,13 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
|
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
|
||||||
}
|
}
|
||||||
else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
return ctx->vision_model.mm_2_b->ne[0];
|
return ctx->vision_model.mm_2_b->ne[0];
|
||||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
}
|
||||||
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
return ctx->vision_model.mm_3_b->ne[0];
|
return ctx->vision_model.mm_3_b->ne[0];
|
||||||
}
|
}
|
||||||
else {
|
|
||||||
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
|
||||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_tensor *clip_get_newline_tensor(const struct clip_ctx * ctx) {
|
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
||||||
return ctx->vision_model.image_newline;
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||||
}
|
|
||||||
|
|
||||||
int clip_n_patches(const struct clip_ctx * ctx) {
|
|
||||||
auto & params = ctx->vision_model.hparams;
|
|
||||||
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
|
||||||
n_patches /= 4;
|
|
||||||
}
|
|
||||||
return n_patches;
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -26,7 +26,17 @@ extern "C" {
|
||||||
|
|
||||||
struct clip_ctx;
|
struct clip_ctx;
|
||||||
|
|
||||||
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
|
struct clip_image_u8_batch {
|
||||||
|
struct clip_image_u8 * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clip_image_f32_batch {
|
||||||
|
struct clip_image_f32 * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
|
||||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||||
|
|
||||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||||
|
@ -45,33 +55,21 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||||
|
|
||||||
struct clip_image_u8_batch {
|
|
||||||
struct clip_image_u8 * data;
|
|
||||||
size_t size;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct clip_image_f32_batch {
|
|
||||||
struct clip_image_f32 * data;
|
|
||||||
size_t size;
|
|
||||||
};
|
|
||||||
CLIP_API struct clip_image_grid_shape {
|
|
||||||
int first;
|
|
||||||
int second;
|
|
||||||
};
|
|
||||||
|
|
||||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||||
|
|
||||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||||
|
|
||||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||||
|
|
||||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||||
|
|
||||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
|
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
|
||||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch& res_imgs );
|
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs );
|
||||||
CLIP_API struct ggml_tensor *clip_get_newline_tensor(const struct clip_ctx * ctx);
|
|
||||||
|
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||||
|
|
||||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
||||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
||||||
|
|
|
@ -26,6 +26,11 @@ struct clip_image_f32 {
|
||||||
std::vector<float> buf;
|
std::vector<float> buf;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct clip_image_grid_shape {
|
||||||
|
int first;
|
||||||
|
int second;
|
||||||
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||||
*
|
*
|
||||||
|
@ -344,7 +349,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
||||||
clip_image_u8 * img = clip_image_u8_init();
|
clip_image_u8 * img = clip_image_u8_init();
|
||||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||||
clip_image_u8_free(img);
|
clip_image_u8_free(img);
|
||||||
|
@ -401,7 +406,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||||||
unsigned char* image_bytes;
|
unsigned char* image_bytes;
|
||||||
long image_bytes_length;
|
long image_bytes_length;
|
||||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||||
|
@ -416,7 +421,7 @@ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct
|
||||||
return embed;
|
return embed;
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed) {
|
void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||||
free(embed->embed);
|
free(embed->embed);
|
||||||
free(embed);
|
free(embed);
|
||||||
}
|
}
|
||||||
|
|
|
@ -3,7 +3,6 @@
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
|
||||||
|
|
||||||
#ifdef LLAMA_SHARED
|
#ifdef LLAMA_SHARED
|
||||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||||
# ifdef LLAMA_BUILD
|
# ifdef LLAMA_BUILD
|
||||||
|
@ -42,7 +41,6 @@ LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||||
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue