add extra tensors
This commit is contained in:
parent
66a6dbf702
commit
999f1f879d
1 changed files with 33 additions and 4 deletions
37
llama.cpp
37
llama.cpp
|
@ -321,6 +321,7 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||||
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
|
@ -900,15 +901,20 @@ struct llama_layer {
|
||||||
struct ggml_tensor * wk;
|
struct ggml_tensor * wk;
|
||||||
struct ggml_tensor * wv;
|
struct ggml_tensor * wv;
|
||||||
struct ggml_tensor * wo;
|
struct ggml_tensor * wo;
|
||||||
|
struct ggml_tensor * wo_b;
|
||||||
struct ggml_tensor * wqkv;
|
struct ggml_tensor * wqkv;
|
||||||
|
struct ggml_tensor * wqkv_b;
|
||||||
|
|
||||||
// normalization
|
// normalization
|
||||||
struct ggml_tensor * ffn_norm;
|
struct ggml_tensor * ffn_norm;
|
||||||
|
struct ggml_tensor * ffn_norm_b;
|
||||||
|
|
||||||
// ff
|
// ff
|
||||||
struct ggml_tensor * w1; // ffn_gate
|
struct ggml_tensor * w1; // ffn_gate
|
||||||
struct ggml_tensor * w2; // ffn_down
|
struct ggml_tensor * w2; // ffn_down
|
||||||
struct ggml_tensor * w3; // ffn_up
|
struct ggml_tensor * w2_b; // ff_down bias
|
||||||
|
struct ggml_tensor * w3; // ffn_up
|
||||||
|
struct ggml_tensor * w3_b; // ff_up bias
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_kv_cache {
|
struct llama_kv_cache {
|
||||||
|
@ -2012,14 +2018,37 @@ static void llm_load_tensors(
|
||||||
// I think this is because we skip the QKV reshaping in the conversion script (maybe because parallel attention is disabled?)
|
// I think this is because we skip the QKV reshaping in the conversion script (maybe because parallel attention is disabled?)
|
||||||
if (model.type == MODEL_1B) {
|
if (model.type == MODEL_1B) {
|
||||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd * 3}, backend_split);
|
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd * 3}, backend_split);
|
||||||
|
// TODO - The config.json has a `bias: true` -- can we plumb that through here to figure out if we need to include it?
|
||||||
|
layer.wqkv_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd * 3}, backend);
|
||||||
} else {
|
} else {
|
||||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
|
||||||
}
|
}
|
||||||
|
|
||||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||||
|
// TODO - The config.json has a `bias: true` -- can we plumb that through here to figure out if we need to include it?
|
||||||
|
if (model.type == MODEL_1B) {
|
||||||
|
layer.wo_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: Can we figure out if we need this dynamically?
|
||||||
|
if (model.type == MODEL_1B) {
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||||
|
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
|
||||||
|
|
||||||
|
// TODO - The config.json has a `bias: true` -- can we plumb that through here to figure out if we need to include it?
|
||||||
|
if (model.type == MODEL_1B) {
|
||||||
|
layer.w2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
|
||||||
|
}
|
||||||
|
|
||||||
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
|
||||||
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
|
// TODO - The config.json has a `bias: true` -- can we plumb that through here to figure out if we need to include it?
|
||||||
|
if (model.type == MODEL_1B) {
|
||||||
|
// TODO - where does 4 come from?
|
||||||
|
layer.w3_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_embd * 4}, backend_split);
|
||||||
|
}
|
||||||
|
|
||||||
if (backend == GGML_BACKEND_GPU) {
|
if (backend == GGML_BACKEND_GPU) {
|
||||||
vram_weights +=
|
vram_weights +=
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue