cuda : switch to F16 scalars + tune warps for RTX 2060
This commit is contained in:
parent
2c04beeb81
commit
9a5c2a1681
2 changed files with 61 additions and 47 deletions
94
ggml-cuda.cu
94
ggml-cuda.cu
|
@ -6491,8 +6491,8 @@ static __global__ void flash_attn_ext_f16(
|
|||
__syncthreads();
|
||||
|
||||
{
|
||||
float S[Q];
|
||||
float M[Q];
|
||||
half S[Q];
|
||||
half M[Q];
|
||||
|
||||
for(int i = 0; i < Q; i++) {
|
||||
S[i] = 0.0f;
|
||||
|
@ -6579,67 +6579,68 @@ static __global__ void flash_attn_ext_f16(
|
|||
}
|
||||
|
||||
// used to detect blocks full of -INF
|
||||
float smax = -INFINITY;
|
||||
half smax = -INFINITY;
|
||||
|
||||
// online softmax
|
||||
if (C == 32) {
|
||||
for (int64_t j = 0; j < Q; ++j) {
|
||||
const int64_t p = lane_id;
|
||||
|
||||
const float m = M[j];
|
||||
const float s = __half2float(ss[j*T + p]);
|
||||
const half m = M[j];
|
||||
const half s = ss[j*T + p];
|
||||
|
||||
smax = warp_reduce_max(max(smax, s));
|
||||
M[j] = warp_reduce_max(max(M[j], s));
|
||||
smax = warp_reduce_max(__hmax(smax, s));
|
||||
M[j] = warp_reduce_max(__hmax(M[j], s));
|
||||
|
||||
const float ms = m == -INFINITY ? 0.0f : expf(m - M[j]);
|
||||
const float vs = s == -INFINITY ? 0.0f : expf(s - M[j]);
|
||||
const half ms = __hisinf(m) ? 0.0f : expf(m - M[j]);
|
||||
const half vs = __hisinf(s) ? 0.0f : expf(s - M[j]);
|
||||
|
||||
S[j] = S[j]*ms + warp_reduce_sum(vs);
|
||||
|
||||
// create a QxQ diagonal matrix for rescaling the output
|
||||
if (p == j) {
|
||||
ss[j*T + C + j] = __float2half(ms);
|
||||
ss[j*T + C + j] = ms;
|
||||
}
|
||||
|
||||
// the P matrix from the paper (Q rows, C columns)
|
||||
ss[j*T + p] = __float2half(vs);
|
||||
ss[j*T + p] = vs;
|
||||
}
|
||||
} else {
|
||||
for (int64_t j = 0; j < Q; ++j) {
|
||||
const float m = M[j];
|
||||
const half m = M[j];
|
||||
|
||||
for (int64_t p = lane_id; p < C; p += NW) {
|
||||
const float s = __half2float(ss[j*T + p]);
|
||||
const half s = ss[j*T + p];
|
||||
|
||||
smax = warp_reduce_max(max(smax, s));
|
||||
M[j] = warp_reduce_max(max(M[j], s));
|
||||
smax = warp_reduce_max(__hmax(smax, s));
|
||||
M[j] = warp_reduce_max(__hmax(M[j], s));
|
||||
}
|
||||
|
||||
const float ms = m == -INFINITY ? 0.0f : expf(m - M[j]);
|
||||
const half ms = __hisinf(m) ? 0.0f : expf(m - M[j]);
|
||||
|
||||
S[j] = S[j]*ms;
|
||||
|
||||
// create a QxQ diagonal matrix for rescaling the output
|
||||
if (lane_id == j) {
|
||||
ss[j*T + C + j] = __float2half(ms);
|
||||
ss[j*T + C + j] = ms;
|
||||
}
|
||||
|
||||
for (int64_t p = lane_id; p < C; p += NW) {
|
||||
const float s = __half2float(ss[j*T + p]);
|
||||
const half s = ss[j*T + p];
|
||||
|
||||
const float vs = s == -INFINITY ? 0.0f : expf(s - M[j]);
|
||||
const half vs = __hisinf(s) ? 0.0f : expf(s - M[j]);
|
||||
|
||||
S[j] = S[j] + warp_reduce_sum(vs);
|
||||
|
||||
// the P matrix from the paper (Q rows, C columns)
|
||||
ss[j*T + p] = __float2half(vs);
|
||||
ss[j*T + p] = vs;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// skip -INF blocks
|
||||
if (smax == -INFINITY) {
|
||||
if (__hisinf(smax)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -6686,16 +6687,16 @@ static __global__ void flash_attn_ext_f16(
|
|||
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
|
||||
for (int64_t j = 0; j < Q; ++j) {
|
||||
if (lane_id == 0) {
|
||||
ss[j*T + 0] = __float2half(S[j]);
|
||||
ss[j*T + 1] = __float2half(M[j]);
|
||||
ss[j*T + 0] = S[j];
|
||||
ss[j*T + 1] = M[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reduce the warps sequentially
|
||||
for (int64_t sg = 1; sg < num_warps; ++sg) {
|
||||
float S = 0.0f;
|
||||
float M = -INFINITY;
|
||||
half S = 0.0f;
|
||||
half M = -INFINITY;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
|
@ -6713,25 +6714,25 @@ static __global__ void flash_attn_ext_f16(
|
|||
// the first simdgroup accumulates the results from the other simdgroups
|
||||
if (warp_id == 0) {
|
||||
for (int64_t j = 0; j < Q; ++j) {
|
||||
const float S0 = __half2float(ss[j*T + 0]);
|
||||
const float S1 = __half2float(ss[j*T + sg*SH + 0]);
|
||||
const half S0 = ss[j*T + 0];
|
||||
const half S1 = ss[j*T + sg*SH + 0];
|
||||
|
||||
const float M0 = __half2float(ss[j*T + 1]);
|
||||
const float M1 = __half2float(ss[j*T + sg*SH + 1]);
|
||||
const half M0 = ss[j*T + 1];
|
||||
const half M1 = ss[j*T + sg*SH + 1];
|
||||
|
||||
M = max(M0, M1);
|
||||
M = __hmax(M0, M1);
|
||||
|
||||
const float ms0 = M0 == -INFINITY ? 0.0f : expf(M0 - M);
|
||||
const float ms1 = M1 == -INFINITY ? 0.0f : expf(M1 - M);
|
||||
const half ms0 = __hisinf(M0) ? 0.0f : expf(M0 - M);
|
||||
const half ms1 = __hisinf(M1) ? 0.0f : expf(M1 - M);
|
||||
|
||||
S = S0*ms0 + S1*ms1;
|
||||
|
||||
if (lane_id == 0) {
|
||||
ss[j*T + 0] = __float2half(S);
|
||||
ss[j*T + 1] = __float2half(M);
|
||||
ss[j*T + 0] = S;
|
||||
ss[j*T + 1] = M;
|
||||
|
||||
ss[j*T + C + j ] = __float2half(ms0);
|
||||
ss[j*T + C + j + sg*SH] = __float2half(ms1);
|
||||
ss[j*T + C + j ] = ms0;
|
||||
ss[j*T + C + j + sg*SH] = ms1;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6774,10 +6775,10 @@ static __global__ void flash_attn_ext_f16(
|
|||
// final rescale with 1/S and store to global memory
|
||||
if (warp_id == 0) {
|
||||
for (int64_t j = 0; j < Q && iq1 + j < ne01; ++j) {
|
||||
const float S = __half2float(ss[j*T + 0]);
|
||||
const half S = ss[j*T + 0];
|
||||
|
||||
for (int64_t i = lane_id; i < D; i += NW) {
|
||||
dst[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D + i] = __half2float(sq[j*T + i]) / S;
|
||||
dst[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D + i] = __half2float(sq[j*T + i] / S);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -10930,12 +10931,15 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
|
|||
float scale;
|
||||
memcpy(&scale, KQV->op_params, sizeof(float));
|
||||
|
||||
const int nqpb = 16; // queries per block
|
||||
const int ncpw = 32; // cache values per warp (does not work for other values)
|
||||
#define NQPB 16
|
||||
#define NCPW 32
|
||||
|
||||
const int nqpb = NQPB; // queries per block
|
||||
const int ncpw = NCPW; // cache values per warp (does not work for other values)
|
||||
|
||||
const int nwarps_max = 8; // TODO: we don't want to launch too much warps. how much is too much?
|
||||
// TODO: produces wrong results for nwarps > 8 (RTX 2060) - not sure why
|
||||
const int nwarps = Q->ne[1] <= nqpb ? MAX(4, MIN(K->ne[1]/ncpw, nwarps_max)) : 4;
|
||||
const int nwarps = Q->ne[1] <= nqpb ? MAX(2, MIN(K->ne[1]/ncpw, nwarps_max)) : 2;
|
||||
|
||||
dim3 blocks_num((Q->ne[1] + nqpb - 1) / nqpb, Q->ne[2], Q->ne[3]);
|
||||
dim3 block_dim(32, nwarps, 1);
|
||||
|
@ -10945,7 +10949,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
|
|||
switch (Q->ne[0])
|
||||
{
|
||||
case 16:
|
||||
flash_attn_ext_f16<16, 16, 32>
|
||||
flash_attn_ext_f16<16, NQPB, NCPW>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) src0_extra->data_device[g_main_device], // Query
|
||||
(const char *) src1_extra->data_device[g_main_device], // Key
|
||||
|
@ -10962,7 +10966,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
|
|||
);
|
||||
break;
|
||||
case 64:
|
||||
flash_attn_ext_f16<64, 16, 32>
|
||||
flash_attn_ext_f16<64, NQPB, NCPW>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) src0_extra->data_device[g_main_device], // Query
|
||||
(const char *) src1_extra->data_device[g_main_device], // Key
|
||||
|
@ -10979,7 +10983,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
|
|||
);
|
||||
break;
|
||||
case 80:
|
||||
flash_attn_ext_f16<80, 16, 32>
|
||||
flash_attn_ext_f16<80, NQPB, NCPW>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) src0_extra->data_device[g_main_device], // Query
|
||||
(const char *) src1_extra->data_device[g_main_device], // Key
|
||||
|
@ -10996,7 +11000,7 @@ inline void ggml_cuda_flash_attn_ext(const ggml_tensor * Q, const ggml_tensor *
|
|||
);
|
||||
break;
|
||||
case 128:
|
||||
flash_attn_ext_f16<128, 16, 32>
|
||||
flash_attn_ext_f16<128, NQPB, NCPW>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) src0_extra->data_device[g_main_device], // Query
|
||||
(const char *) src1_extra->data_device[g_main_device], // Key
|
||||
|
|
|
@ -572,9 +572,19 @@ struct test_case {
|
|||
// duplicate the op
|
||||
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
|
||||
int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
|
||||
#if 1
|
||||
for (int i = 1; i < n_runs; i++) {
|
||||
gf->nodes[gf->n_nodes++] = out;
|
||||
}
|
||||
#else
|
||||
n_runs = 1000;
|
||||
int n_nodes = gf->n_nodes;
|
||||
for (int i = 1; i < n_runs; i++) {
|
||||
for (int j = 0; j < n_nodes; j++) {
|
||||
gf->nodes[gf->n_nodes++] = gf->nodes[j];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// calculate memory
|
||||
size_t mem = n_runs * op_size(out);
|
||||
|
@ -2199,8 +2209,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_pad());
|
||||
test_cases.emplace_back(new test_leaky_relu());
|
||||
|
||||
#if 0
|
||||
for (int hs : { 64, 80, 96, 112, 128, 256, }) {
|
||||
#if 1
|
||||
for (int hs : { 64, 80, 128, }) {
|
||||
for (int nh : { 32, }) {
|
||||
for (int kv : { 512, 1024, 2048, 4096, }) {
|
||||
for (int nb : { 1, 2, 4, 8, 512, 1024, 2048, }) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue