Merge branch 'master' into embd_inp

This commit is contained in:
ningshanwutuobang 2023-06-25 05:52:34 +08:00
commit 9b03f85953
31 changed files with 2028 additions and 514 deletions

1
.gitignore vendored
View file

@ -35,6 +35,7 @@ models/*
/perplexity
/embedding
/train-text-from-scratch
/simple
/benchmark-matmult
/vdot
/server

View file

@ -70,6 +70,7 @@ set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
option(LLAMA_CUDA_DMMV_F16 "llama: use 16 bit floats for dmmv CUDA kernels" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" OFF)
@ -238,6 +239,9 @@ if (LLAMA_CUBLAS)
add_compile_definitions(GGML_USE_CUBLAS)
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
if (LLAMA_CUDA_DMMV_F16)
add_compile_definitions(GGML_CUDA_DMMV_F16)
endif()
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
if (LLAMA_STATIC)
@ -246,6 +250,15 @@ if (LLAMA_CUBLAS)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
if (LLAMA_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "61") # needed for f16 CUDA intrinsics
else()
set(CMAKE_CUDA_ARCHITECTURES "52") # lowest CUDA 12 standard
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
else()
message(WARNING "cuBLAS not found")
endif()
@ -465,6 +478,7 @@ add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
endif()
add_library(llama
@ -488,13 +502,6 @@ if (BUILD_SHARED_LIBS)
endif()
endif()
if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF)
endif()
#
# programs, examples and tests

View file

@ -144,11 +144,7 @@ endif # LLAMA_NO_ACCELERATE
ifdef LLAMA_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
LDFLAGS += -lopenblas -lcblas
else
LDFLAGS += -lopenblas
endif
LDFLAGS += -lopenblas
endif # LLAMA_OPENBLAS
ifdef LLAMA_BLIS
@ -173,6 +169,9 @@ ifdef LLAMA_CUDA_DMMV_Y
else
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1
endif # LLAMA_CUDA_DMMV_Y
ifdef LLAMA_CUDA_DMMV_F16
NVCCFLAGS += -DGGML_CUDA_DMMV_F16
endif # LLAMA_CUDA_DMMV_F16
ifdef LLAMA_CUDA_KQUANTS_ITER
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
else
@ -256,7 +255,7 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h
@ -280,9 +279,6 @@ main: examples/main/main.cpp build-info.h ggml.
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./simple -h for help. ===='
@echo
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View file

@ -9,12 +9,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
**Hot topics:**
- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1
- Roadmap June 2023: https://github.com/ggerganov/llama.cpp/discussions/1729
- GPU support with Metal (Apple Silicon): https://github.com/ggerganov/llama.cpp/pull/1642
- High-quality 2,3,4,5,6-bit quantization: https://github.com/ggerganov/llama.cpp/pull/1684
- Multi-GPU support: https://github.com/ggerganov/llama.cpp/pull/1607
- Training LLaMA models from scratch: https://github.com/ggerganov/llama.cpp/pull/1652
- CPU threading improvements: https://github.com/ggerganov/llama.cpp/pull/1632
<details>
<summary>Table of Contents</summary>
@ -33,6 +29,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
<li><a href="#quantization">Quantization</a></li>
<li><a href="#interactive-mode">Interactive mode</a></li>
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
<li><a href="#using-gpt4all">Using GPT4All</a></li>
<li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
<li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
@ -336,9 +333,15 @@ Building the program with BLAS support may lead to some performance improvements
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release
```
Note: Because llama.cpp uses multiple CUDA streams for matrix multiplication results [are not guaranteed to be reproducible](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility). If you need reproducibility, set `GGML_CUDA_MAX_STREAMS` in the file `ggml-cuda.cu` to 1.
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### CLBlast
@ -372,7 +375,7 @@ Building the program with BLAS support may lead to some performance improvements
```sh
git clone https://github.com/CNugteren/CLBlast.git
mkdir CLBlast/build
cd CLBLast/build
cd CLBlast/build
cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
cmake --build . --config Release
cmake --install . --prefix /some/path
@ -541,6 +544,13 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
```
### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
@ -618,7 +628,12 @@ And after 4.45 hours, you will have the final perplexity.
#### Building the Project using Android NDK
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
First, install the essential packages for termux:
```
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
```
$ mkdir build-android
$ cd build-android
@ -665,12 +680,13 @@ Upon completion of the aforementioned steps, you will have successfully compiled
```
GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH
./main (...)
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
```
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script.
### Docker
#### Prerequisites

View file

@ -130,6 +130,14 @@ TENSORS_LIST = make_tensors_list()
TENSORS_SET = set(TENSORS_LIST)
def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
for n_mult in range(256, 1, -1):
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
if calc_ff == n_ff:
return n_mult
return 1
@dataclass
class Params:
n_vocab: int
@ -137,21 +145,61 @@ class Params:
n_mult: int
n_head: int
n_layer: int
file_type: GGMLFileType
@staticmethod
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
n_vocab, n_embd = model["tok_embeddings.weight"].shape
def guessed(model: 'LazyModel') -> 'Params':
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
else:
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
n_head=n_embd // 128 # guessed
return Params(
n_vocab=n_vocab,
n_embd=n_embd,
n_mult=256,
n_head=n_embd // 128,
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model),
file_type=file_type,
n_head=n_head,
n_layer=n_layer,
)
@staticmethod
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))
n_vocab = config["vocab_size"];
n_embd = config["hidden_size"];
n_head = config["num_attention_heads"];
n_layer = config["num_hidden_layers"];
n_ff = config["intermediate_size"];
n_mult = find_n_mult(n_ff, n_embd);
return Params(
n_vocab=n_vocab,
n_embd=n_embd,
n_mult=n_mult,
n_head=n_head,
n_layer=n_layer,
)
@staticmethod
def load(model_plus: 'ModelPlus') -> 'Params':
orig_config_path = model_plus.paths[0].parent / "params.json"
hf_transformer_config_path = model_plus.paths[0].parent / "config.json"
if hf_transformer_config_path.exists():
params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path)
else:
params = Params.guessed(model_plus.model)
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
return params
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
@ -595,18 +643,17 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
out: LazyModel = {}
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
out["norm.weight"] = model["model.norm.weight"]
out["output.weight"] = model["lm_head.weight"]
n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
break
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head)
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
@ -920,7 +967,7 @@ class OutputFile:
def __init__(self, fname_out: Path) -> None:
self.fout = open(fname_out, "wb")
def write_file_header(self, params: Params) -> None:
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
self.fout.write(b"ggjt"[::-1]) # magic
values = [
1, # file version
@ -930,7 +977,7 @@ class OutputFile:
params.n_head,
params.n_layer,
params.n_embd // params.n_head, # rot (obsolete)
params.file_type.value,
file_type.value,
]
self.fout.write(struct.pack("i" * len(values), *values))
@ -951,17 +998,17 @@ class OutputFile:
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
of = OutputFile(fname_out)
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0,
n_head=1, n_layer=0, file_type=GGMLFileType.AllF32)
n_head=1, n_layer=0)
of = OutputFile(fname_out)
of.write_file_header(params)
of.write_file_header(params, file_type=GGMLFileType.AllF32)
of.write_vocab(vocab)
of.fout.close()
@staticmethod
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
of.write_file_header(params)
of.write_file_header(params, file_type)
print("Writing vocab...")
of.write_vocab(vocab)
@ -997,11 +1044,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi
raise Exception(f"Unexpected combination of types: {name_to_type}")
def do_necessary_conversions(model: LazyModel) -> LazyModel:
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
model = handle_quantization(model)
if "lm_head.weight" in model:
model = convert_transformers_to_orig(model)
model = convert_transformers_to_orig(model, params)
model = filter_and_sort_tensors(model)
return model
@ -1107,14 +1154,14 @@ def load_vocab(path: Path) -> SentencePieceVocab:
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
def default_outfile(model_paths: List[Path], params: Params) -> Path:
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
namestr = {
GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16",
GGMLFileType.MostlyQ4_0: "q4_0",
GGMLFileType.MostlyQ4_1: "q4_1",
GGMLFileType.PerLayerIsQ4_1: "q4_1",
}[params.file_type]
}[file_type]
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
if ret in model_paths:
sys.stderr.write(
@ -1164,13 +1211,13 @@ def main(args_in: Optional[List[str]] = None) -> None:
else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir)
params = Params.load(model_plus)
model = model_plus.model
model = do_necessary_conversions(model)
model = do_necessary_conversions(model, params)
output_type = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, output_type)
params = Params.guessed(model, output_type)
outfile = args.outfile or default_outfile(model_plus.paths, params)
OutputFile.write_all(outfile, params, model, vocab)
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
OutputFile.write_all(outfile, params, output_type, model, vocab)
print(f"Wrote {outfile}")

View file

@ -38,6 +38,7 @@ else()
add_subdirectory(benchmark)
add_subdirectory(baby-llama)
add_subdirectory(train-text-from-scratch)
add_subdirectory(simple)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()

View file

@ -106,9 +106,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
if (arg == "-s" || arg == "--seed") {
#if defined(GGML_USE_CUBLAS)
fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n");
#endif
if (++i >= argc) {
invalid_param = true;
break;
@ -539,7 +536,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
return res;
}
struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
@ -555,25 +552,33 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
lparams.logits_all = params.perplexity;
lparams.embedding = params.embedding;
llama_context * lctx = llama_init_from_file(params.model.c_str(), lparams);
if (lctx == NULL) {
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return NULL;
return std::make_tuple(nullptr, nullptr);
}
llama_context * lctx = llama_new_context_with_model(model, lparams);
if (lctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
if (!params.lora_adapter.empty()) {
int err = llama_apply_lora_from_file(lctx,
int err = llama_model_apply_lora_from_file(model,
params.lora_adapter.c_str(),
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
params.n_threads);
if (err != 0) {
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
return NULL;
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}
return lctx;
return std::make_tuple(model, lctx);
}
void console_init(console_state & con_st) {

View file

@ -9,6 +9,7 @@
#include <random>
#include <thread>
#include <unordered_map>
#include <tuple>
#if !defined (_WIN32)
#include <stdio.h>
@ -95,7 +96,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
// Model utils
//
struct llama_context * llama_init_from_gpt_params(const gpt_params & params);
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
//
// Console utils

View file

@ -37,11 +37,12 @@ int main(int argc, char ** argv) {
llama_init_backend();
llama_model * model;
llama_context * ctx;
// load the model
ctx = llama_init_from_gpt_params(params);
if (ctx == NULL) {
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
@ -90,6 +91,7 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
return 0;
}

View file

@ -107,12 +107,13 @@ int main(int argc, char ** argv) {
llama_init_backend();
llama_model * model;
llama_context * ctx;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
ctx = llama_init_from_gpt_params(params);
if (ctx == NULL) {
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
@ -139,6 +140,7 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
return 0;
}
@ -147,6 +149,7 @@ int main(int argc, char ** argv) {
if (params.export_cgraph) {
llama_eval_export(ctx, "llama.ggml");
llama_free(ctx);
llama_free_model(model);
return 0;
}
@ -354,7 +357,7 @@ int main(int argc, char ** argv) {
if ((int)embd.size() > max_embd_size) {
auto skipped_tokens = embd.size() - max_embd_size;
console_set_color(con_st, CONSOLE_COLOR_ERROR);
printf("<<input too long: skipped %" PRIu64 " token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
fflush(stdout);
embd.resize(max_embd_size);
@ -666,6 +669,7 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
return 0;
}

View file

@ -40,8 +40,10 @@ int main(int argc, char ** argv) {
// this allocates all Metal resources and memory buffers
auto * ctx_metal = ggml_metal_init();
ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data));
ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval));
const size_t max_size_data = ggml_get_max_tensor_size(ctx_data);
const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval);
ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data), max_size_data);
ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval), max_size_eval);
// main
{

View file

@ -149,11 +149,12 @@ int main(int argc, char ** argv) {
llama_init_backend();
llama_model * model;
llama_context * ctx;
// load the model and apply lora adapter, if any
ctx = llama_init_from_gpt_params(params);
if (ctx == NULL) {
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
@ -169,6 +170,7 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
return 0;
}

View file

@ -320,6 +320,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_model * model;
llama_context * ctx;
{
@ -330,10 +331,18 @@ int main(int argc, char ** argv) {
lparams.f16_kv = false;
lparams.use_mlock = false;
ctx = llama_init_from_file(params.model.c_str(), lparams);
model = llama_load_model_from_file(params.model.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return 1;
}
}
@ -357,6 +366,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
llama_free_model(model);
return 1;
}
included_layers++;
@ -415,6 +425,7 @@ int main(int argc, char ** argv) {
llama_free(ctx);
llama_free_model(model);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();

View file

@ -35,12 +35,22 @@ int main(int argc, char ** argv) {
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
// init
auto ctx = llama_init_from_file(params.model.c_str(), lparams);
auto model = llama_load_model_from_file(params.model.c_str(), lparams);
if (model == nullptr) {
return 1;
}
auto ctx = llama_new_context_with_model(model, lparams);
if (ctx == nullptr) {
llama_free_model(model);
return 1;
}
auto tokens = std::vector<llama_token>(params.n_ctx);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
llama_free(ctx);
llama_free_model(model);
return 1;
}
@ -84,6 +94,8 @@ int main(int argc, char ** argv) {
printf("%s", next_token_str);
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx);
llama_free_model(model);
return 1;
}
n_past += 1;
@ -91,23 +103,27 @@ int main(int argc, char ** argv) {
printf("\n\n");
// free old model
// free old context
llama_free(ctx);
// load new model
auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
// make new context
auto ctx2 = llama_new_context_with_model(model, lparams);
// Load state (rng, logits, embedding and kv_cache) from file
{
FILE *fp_read = fopen("dump_state.bin", "rb");
if (state_size != llama_get_state_size(ctx2)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
@ -138,6 +154,8 @@ int main(int argc, char ** argv) {
printf("%s", next_token_str);
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
n_past += 1;
@ -145,5 +163,8 @@ int main(int argc, char ** argv) {
printf("\n\n");
llama_free(ctx2);
llama_free_model(model);
return 0;
}

View file

@ -21,6 +21,7 @@ Command line options:
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
- `--port`: Set the port to listen. Default: `8080`.
- `--embedding`: Enable embedding extraction, Default: disabled.
## Build
@ -119,14 +120,14 @@ node .
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. (default: 128, -1 = infinity).
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity).
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate.
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does.
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
@ -163,6 +164,14 @@ node .
`content`: Set the text to tokenize.
Note that the special `BOS` token is not added in fron of the text and also a space character is not inserted automatically as it is for `/completion`.
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
*Options:*
`content`: Set the text to process.
## More examples
### Interactive mode

View file

@ -115,6 +115,7 @@ struct llama_server_context {
std::vector<llama_token> embd;
std::vector<llama_token> last_n_tokens;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
gpt_params params;
@ -130,6 +131,10 @@ struct llama_server_context {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
}
void rewind() {
@ -150,8 +155,8 @@ struct llama_server_context {
bool loadModel(const gpt_params & params_) {
params = params_;
ctx = llama_init_from_gpt_params(params);
if (ctx == nullptr) {
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr) {
LOG_ERROR("unable to load model", { { "model", params_.model } });
return false;
}
@ -254,6 +259,11 @@ struct llama_server_context {
n_past += n_eval;
}
if (params.n_predict == 0) {
has_next_token = false;
return llama_token_eos();
}
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
@ -419,6 +429,19 @@ struct llama_server_context {
return token_text;
}
std::vector<float> getEmbedding() {
static const int n_embd = llama_n_embd(ctx);
if (!params.embedding) {
LOG_WARNING("embedding disabled", {
{ "params.embedding", params.embedding },
});
return std::vector<float>(n_embd, 0.0f);
}
const float * data = llama_get_embeddings(ctx);
std::vector<float> embedding(data, data + n_embd);
return embedding;
}
};
static void server_print_usage(const char * argv0, const gpt_params & params,
@ -457,6 +480,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params,
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
fprintf(stderr, "\n");
}
@ -603,6 +627,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--embedding") {
params.embedding = true;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
@ -646,6 +672,12 @@ static json format_generation_settings(llama_server_context & llama) {
};
}
static json format_embedding_response(llama_server_context & llama) {
return json {
{ "embedding", llama.getEmbedding() },
};
}
static json format_final_response(llama_server_context & llama, const std::string & content) {
return json {
{ "content", content },
@ -881,12 +913,27 @@ int main(int argc, char ** argv) {
svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
const json body = json::parse(req.body);
const std::string content = body["content"].get<std::string>();
const std::string content = body.value("content", "");
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json");
});
svr.Post("/embedding", [&llama](const Request & req, Response & res) {
const json body = json::parse(req.body);
llama.rewind();
llama_reset_timings(llama.ctx);
llama.params.prompt = body.value("content", "");
llama.params.n_predict = 0;
llama.loadPrompt();
llama.beginCompletion();
llama.doCompletion();
const json data = format_embedding_response(llama);
return res.set_content(data.dump(), "application/json");
});
svr.set_logger(log_server_request);
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {

View file

@ -68,11 +68,12 @@ int main(int argc, char ** argv)
llama_init_backend();
llama_context * ctx ;
llama_model * model;
llama_context * ctx;
ctx = llama_init_from_gpt_params( params );
std::tie(model, ctx) = llama_init_from_gpt_params( params );
if ( ctx == NULL )
if ( model == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1;
@ -170,6 +171,7 @@ int main(int argc, char ** argv)
} // wend of main loop
llama_free( ctx );
llama_free_model( model );
return 0;
}

View file

@ -3054,7 +3054,8 @@ int main(int argc, char ** argv) {
struct llama_context_params llama_params = llama_context_default_params();
llama_params.vocab_only = true;
struct llama_context * lctx = llama_init_from_file(params.fn_vocab_model, llama_params);
struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params);
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
struct llama_vocab vocab;
{
@ -3395,6 +3396,8 @@ int main(int argc, char ** argv) {
delete[] compute_addr;
delete[] compute_buf_0;
delete[] compute_buf_1;
llama_free(lctx);
llama_free_model(lmodel);
ggml_free(model.ctx);
return 0;

View file

@ -9,27 +9,33 @@
inherit (pkgs.stdenv) isAarch64 isDarwin;
inherit (pkgs.lib) optionals;
isM1 = isAarch64 && isDarwin;
osSpecific =
if isM1 then with pkgs.darwin.apple_sdk_11_0.frameworks; [ Accelerate MetalKit MetalPerformanceShaders MetalPerformanceShadersGraph ]
else if isDarwin then with pkgs.darwin.apple_sdk.frameworks; [ Accelerate CoreGraphics CoreVideo ]
else [ ];
pkgs = import nixpkgs {
inherit system;
};
llama-python = pkgs.python310.withPackages (ps: with ps; [
numpy
sentencepiece
]);
in
{
osSpecific = if isM1 then
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
MetalKit
MetalPerformanceShaders
MetalPerformanceShadersGraph
]
else if isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else
[ ];
pkgs = import nixpkgs { inherit system; };
llama-python =
pkgs.python310.withPackages (ps: with ps; [ numpy sentencepiece ]);
in {
packages.default = pkgs.stdenv.mkDerivation {
name = "llama.cpp";
src = ./.;
postPatch =
if isM1 then ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";"
'' else "";
postPatch = if isM1 then ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
'' else
"";
nativeBuildInputs = with pkgs; [ cmake ];
buildInputs = osSpecific;
cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" ] ++ (optionals isM1 [
@ -62,11 +68,7 @@
};
apps.default = self.apps.${system}.llama;
devShells.default = pkgs.mkShell {
packages = with pkgs; [
cmake
llama-python
] ++ osSpecific;
packages = with pkgs; [ cmake llama-python ] ++ osSpecific;
};
}
);
});
}

View file

@ -13,6 +13,10 @@
#include "ggml-cuda.h"
#include "ggml.h"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
#define CUDA_CHECK(err) \
@ -46,7 +50,15 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
} while (0)
#endif // CUDART_VERSION >= 11
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
#ifdef GGML_CUDA_DMMV_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif //GGML_CUDA_DMMV_F16
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
@ -230,82 +242,106 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
}
}
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_0 * x = (const block_q4_0 *) vx;
const float d = x[ib].d;
const dfloat d = x[ib].d;
const uint8_t vui = x[ib].qs[iqs];
const int vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
v.x = vui & 0xF;
v.y = vui >> 4;
v0 = (vi0 - 8)*d;
v1 = (vi1 - 8)*d;
#ifdef GGML_CUDA_DMMV_F16
v = __hsub2(v, {8.0f, 8.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 8.0f) * d;
v.y = (v.y - 8.0f) * d;
#endif // GGML_CUDA_DMMV_F16
}
static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_1 * x = (const block_q4_1 *) vx;
const float d = x[ib].d;
const float m = x[ib].m;
const dfloat d = x[ib].d;
const dfloat m = x[ib].m;
const uint8_t vui = x[ib].qs[iqs];
const int vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
v.x = vui & 0xF;
v.y = vui >> 4;
v0 = vi0*d + m;
v1 = vi1*d + m;
#ifdef GGML_CUDA_DMMV_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_DMMV_F16
}
static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_0 * x = (const block_q5_0 *) vx;
const float d = x[ib].d;
const dfloat d = x[ib].d;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
v0 = x0*d;
v1 = x1*d;
#ifdef GGML_CUDA_DMMV_F16
v = __hsub2(v, {16.0f, 16.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 16.0f) * d;
v.y = (v.y - 16.0f) * d;
#endif // GGML_CUDA_DMMV_F16
}
static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_1 * x = (const block_q5_1 *) vx;
const float d = x[ib].d;
const float m = x[ib].m;
const dfloat d = x[ib].d;
const dfloat m = x[ib].m;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
v0 = x0*d + m;
v1 = x1*d + m;
#ifdef GGML_CUDA_DMMV_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_DMMV_F16
}
static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q8_0 * x = (const block_q8_0 *) vx;
const float d = x[ib].d;
const dfloat d = x[ib].d;
const int8_t vi0 = x[ib].qs[iqs + 0];
const int8_t vi1 = x[ib].qs[iqs + 1];
v.x = x[ib].qs[iqs + 0];
v.y = x[ib].qs[iqs + 1];
v0 = vi0*d;
v1 = vi1*d;
#ifdef GGML_CUDA_DMMV_F16
v = __hmul2(v, {d, d});
#else
v.x *= d;
v.y *= d;
#endif // GGML_CUDA_DMMV_F16
}
//================================== k-quants
@ -479,15 +515,15 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float
const block_q2_K * x = (const block_q2_K *)vx + ib0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...7
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...14 in steps of 4
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int s_offset = 8*im;
const int y_offset = 128*im + l0;
@ -542,27 +578,30 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * vx, const float
}
}
static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols) {
static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const int row = blockIdx.x;
const int row = blockIdx.y*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q3_K * x = (const block_q3_K *)vx + ib0;
const int tid = threadIdx.x/2; // 0...15
const int ix = threadIdx.x%2; // 0, 1
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int n = 2; // iterations in the inner loop
const int im = tid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - 8*im; // 0...7
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0....15 or 0...7
const uint8_t m = 1 << (4*im);
const int l0 = n*in; // 0...28 in steps of 4
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int y_offset = 128*im + l0;
@ -573,7 +612,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += 2) {
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
@ -614,22 +653,25 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * vx, const float
}
}
static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols) {
static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float * yy, float * dst, const int ncols, int nrows) {
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int row = blockIdx.x;
const int row = blockIdx.y*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const int tid = threadIdx.x/2; // 0...15
const int ix = threadIdx.x%2;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 4;
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const int il = tid/step; // 0...3
const int ir = tid - step*il; // 0...7 or 0...3
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
@ -645,7 +687,7 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * vx, const float
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += 2) {
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint8_t * q1 = x[i].qs + q_offset;
const uint8_t * q2 = q1 + 64;
@ -700,7 +742,7 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 4;
const int n = 2;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
@ -739,11 +781,16 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * vx, const float
float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
sum.x += y1[l+ 0] * ((ql1[l] & 0xF) + (qh[l] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * ((ql1[l] >> 4) + (qh[l] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * ((ql2[l] & 0xF) + (qh[l] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * ((ql2[l] >> 4) + (qh[l] & (hm2 << 1) ? 16 : 0));
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
@ -839,11 +886,12 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const float
}
}
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
const half * x = (const half *) vx;
v0 = __half2float(x[ib + iqs + 0]);
v1 = __half2float(x[ib + iqs + 1]);
// automatic half -> float type cast if dfloat == float
v.x = x[ib + iqs + 0];
v.y = x[ib + iqs + 1];
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
@ -860,13 +908,15 @@ static __global__ void dequantize_block(const void * vx, float * y, const int k)
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float & v0 = y[iybs + iqs + 0];
float & v1 = y[iybs + iqs + y_offset];
dequantize_kernel(vx, ib, iqs, v0, v1);
dfloat2 v;
dequantize_kernel(vx, ib, iqs, v);
y[iybs + iqs + 0] = v.x;
y[iybs + iqs + y_offset] = v.y;
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols, const int nrows) {
static __global__ void dequantize_mul_mat_vec(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int row = blockIdx.y*blockDim.y + threadIdx.y;
@ -881,7 +931,12 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y,
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
float tmp = 0.0f; // partial sum for thread in warp
// partial sum for each thread
#ifdef GGML_CUDA_DMMV_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_DMMV_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
@ -895,14 +950,21 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y,
// process 2 vals per j iter
// dequantize
float v0, v1;
dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
tmp += v0 * y[iybs + iqs + j/qr + 0];
tmp += v1 * y[iybs + iqs + j/qr + y_offset];
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_DMMV_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_DMMV_F16
}
}
@ -914,7 +976,11 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y,
}
if (tid == 0) {
#ifdef GGML_CUDA_DMMV_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_DMMV_F16
}
}
@ -1209,7 +1275,7 @@ static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cu
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1218,7 +1284,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, f
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1227,7 +1293,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, f
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1236,7 +1302,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, f
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1245,7 +1311,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, f
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1256,7 +1322,7 @@ static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, f
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2;
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(32, ny, 1);
@ -1265,14 +1331,20 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 1, 1);
dequantize_mul_mat_vec_q3_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 1, 1);
dequantize_mul_mat_vec_q4_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
@ -1295,7 +1367,7 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c
dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
const dim3 block_nums(1, block_num_y, 1);
@ -1463,19 +1535,13 @@ static void * g_scratch_buffer = nullptr;
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
static size_t g_scratch_offset = 0;
#define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
#define GGML_CUDA_MAX_EVENTS 64
static int g_device_count = -1;
static int g_main_device = 0;
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr };
static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
void ggml_init_cublas() {
static bool initialized = false;
@ -1499,15 +1565,8 @@ void ggml_init_cublas() {
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(cudaSetDevice(id));
// create streams
for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking));
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking));
}
// create events
for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming));
}
// create main stream
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
// create cublas handle
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
@ -1723,21 +1782,40 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
const int64_t ne00 = src0->ne[0];
const int64_t nrows = i01_high - i01_low;
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_DMMV_F16
size_t ash;
dfloat * src1_dfloat = nullptr; // dfloat == half
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
ne00, 1, sizeof(float), 0, 0,
ne00, 1, sizeof(half), 0, 0, cudaStream_main);
}
#else
dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_DMMV_F16
switch (src0->type) {
case GGML_TYPE_Q4_0:
dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q4_1:
dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q5_0:
dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q5_1:
dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q8_0:
dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q2_K:
dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
@ -1755,7 +1833,7 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
default:
GGML_ASSERT(false);
@ -1763,6 +1841,12 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
}
CUDA_CHECK(cudaGetLastError());
#ifdef GGML_CUDA_DMMV_F16
if (src1_convert_f16) {
ggml_cuda_pool_free(src1_dfloat, ash);
}
#endif // GGML_CUDA_DMMV_F16
(void) src1;
(void) dst;
(void) src0_ddf_i;
@ -1974,6 +2058,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
// if multiple GPUs are used they need to wait for the main GPU to finish
if (split && g_device_count > 1) {
CUDA_CHECK(cudaSetDevice(g_main_device));
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int id = 0; id < g_device_count; ++id) {
if (!split && id != g_main_device) {
continue;
@ -2072,9 +2162,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
}
const int64_t i11 = i13*ne12 + i12;
cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS];
cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS];
cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS];
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
// for split tensors the data begins at i0 == i0_offset_low
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
@ -2102,14 +2190,14 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
if (src1->backend == GGML_BACKEND_CPU) {
GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
int64_t nrows1 = flatten_rows ? nrows0 : ne11;
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_memcpy_src1));
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
} else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
if (id != g_main_device) {
GGML_ASSERT(!flatten_rows);
float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
src1_ddf_i_source += i11*src1_stride;
CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1));
cudaMemcpyDeviceToDevice, cudaStream_main));
}
} else if (src1_on_device && !src1_is_contiguous) {
GGML_ASSERT(!split);
@ -2118,7 +2206,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
GGML_ASSERT(false);
}
}
CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1));
if (!src0_on_device || !src0_is_contiguous) {
if (src0_is_f32) {
@ -2134,9 +2221,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
CUDA_CHECK(cudaGetLastError());
}
// wait with main stream until src1 memcpy is done
CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0));
// do the computation
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
@ -2174,8 +2258,13 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
// wait until each device is finished, then free their buffers
for (int id = 0; id < g_device_count; ++id) {
if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
continue;
}
CUDA_CHECK(cudaSetDevice(id));
CUDA_CHECK(cudaDeviceSynchronize());
if (src0_asq[id] > 0) {
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
}
@ -2241,7 +2330,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
const int64_t ne02 = src0->ne[2];
CUDA_CHECK(cudaSetDevice(g_main_device));
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
void * src0_ddq = src0_extra->data_device[g_main_device];
@ -2253,8 +2342,6 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
CUDA_CHECK(cudaDeviceSynchronize());
}
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
@ -2272,7 +2359,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int64_t nb02 = src0->nb[2];
CUDA_CHECK(cudaSetDevice(g_main_device));
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
void * src0_ddq = src0_extra->data_device[g_main_device];
@ -2287,8 +2374,6 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int channel_stride_x = nb02 / sizeof(half);
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
CUDA_CHECK(cudaDeviceSynchronize());
}
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -2344,7 +2429,7 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
const int64_t nb12 = src1->nb[2];
CUDA_CHECK(cudaSetDevice(g_main_device));
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
@ -2362,8 +2447,6 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
GGML_ASSERT(false);
}
CUDA_CHECK(cudaDeviceSynchronize());
(void) dst;
}
@ -2552,7 +2635,7 @@ void ggml_cuda_free_scratch() {
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT
|| (tensor->src0 != nullptr && (tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT))
|| (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU);
switch (tensor->op) {

View file

@ -41,12 +41,15 @@ void ggml_metal_free(struct ggml_metal_context * ctx);
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
// - the mapping is used during computation to determine the arguments of the compute kernels
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
// - max_size specifies the maximum size of a tensor and is used to create shared views such
// that it is guaranteed that the tensor will fit in at least one of the views
//
bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx,
const char * name,
void * data,
size_t size);
size_t size,
size_t max_size);
// set data from host memory into the device
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);

View file

@ -57,6 +57,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q5_k);
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
@ -66,8 +67,10 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
#undef GGML_METAL_DECL_KERNEL
};
@ -162,6 +165,7 @@ struct ggml_metal_context * ggml_metal_init(void) {
GGML_METAL_ADD_KERNEL(get_rows_q5_k);
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
@ -171,12 +175,22 @@ struct ggml_metal_context * ggml_metal_init(void) {
GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
#undef GGML_METAL_ADD_KERNEL
}
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
if (ctx->device.maxTransferRate != 0) {
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
}
return ctx;
}
@ -193,10 +207,13 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
const int64_t tsize = ggml_nbytes(t);
// find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
*offs = (size_t) ioffs;
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
@ -214,7 +231,8 @@ bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx,
const char * name,
void * data,
size_t size) {
size_t size,
size_t max_size) {
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
fprintf(stderr, "%s: too many buffers\n", __func__);
return false;
@ -231,30 +249,68 @@ bool ggml_metal_add_buffer(
}
}
size_t page_size = getpagesize();
size_t aligned_size = size;
if ((aligned_size % page_size) != 0) {
aligned_size += (page_size - (aligned_size % page_size));
const size_t size_page = getpagesize();
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= ctx->device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
if (ctx->device.maxBufferLength < aligned_size) {
fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
return false;
}
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
return false;
if (ctx->buffers[ctx->n_buffers].metal == nil) {
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false;
}
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
const size_t size_view = ctx->device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
fprintf(stderr, "\n");
}
++ctx->n_buffers;
}
}
++ctx->n_buffers;
fprintf(stderr, ", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
} else {
fprintf(stderr, "\n");
}
}
return true;
@ -735,6 +791,70 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_NORM:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
const float eps = 1e-5f;
const int nth = 256;
[encoder setComputePipelineState:ctx->pipeline_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ALIBI:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
GGML_ASSERT((src0t == GGML_TYPE_F32));
const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past);
const int n_head = ((int32_t *) src1->data)[1];
const float max_bias = ((float *) src1->data)[2];
if (__builtin_popcount(n_head) != 1) {
GGML_ASSERT(false && "only power-of-two n_head implemented");
}
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
const int nth = 32;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ROPE:
{
if (encoder == nil) {
@ -788,6 +908,14 @@ void ggml_metal_graph_compute(
default: GGML_ASSERT(false && "not implemented");
};
} break;
case GGML_TYPE_F16:
{
switch (dstt) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
default: GGML_ASSERT(false && "not implemented");
};
} break;
default: GGML_ASSERT(false && "not implemented");
}
@ -831,4 +959,14 @@ void ggml_metal_graph_compute(
dispatch_barrier_sync(queue, ^{});
[command_buffers[n_cb - 1] waitUntilCompleted];
// check status of command buffers
// needed to detect if the device ran out-of-memory for example (#1881)
for (int i = 0; i < n_cb; i++) {
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status];
if (status != MTLCommandBufferStatusCompleted) {
fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
GGML_ASSERT(false);
}
}
}

View file

@ -256,6 +256,72 @@ kernel void kernel_get_rows_q4_1(
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
// MEAN
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += x[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
// recenter
device float * y = dst + tgpig*ne00;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
}
// VARIANCE
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += y[i00] * y[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = y[i00] * scale;
}
}
kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
@ -485,6 +551,48 @@ kernel void kernel_mul_mat_f16_f32(
}
}
kernel void kernel_alibi_f32(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant float & m0,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
float m_k = pow(m0, i2 + 1);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
}
}
kernel void kernel_rope(
device const void * src0,
device float * dst,
@ -540,6 +648,47 @@ kernel void kernel_rope(
}
}
kernel void kernel_cpy_f16_f16(
device const half * src0,
device half * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_f16(
device const float * src0,
device half * dst,

View file

@ -15,6 +15,10 @@
#include "ggml.h"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define CL_DMMV_BLOCK_SIZE 32
#define MULTILINE_QUOTE(...) #__VA_ARGS__

965
ggml.c

File diff suppressed because it is too large Load diff

150
ggml.h
View file

@ -303,6 +303,7 @@ extern "C" {
GGML_OP_STEP,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_GELU_QUICK,
GGML_OP_SILU,
GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize
@ -331,12 +332,15 @@ extern "C" {
GGML_OP_ROPE_BACK,
GGML_OP_ALIBI,
GGML_OP_CLAMP,
GGML_OP_CONV_1D_1S,
GGML_OP_CONV_1D_2S,
GGML_OP_CONV_1D_S1_PH,
GGML_OP_CONV_1D_S2_PH,
GGML_OP_CONV_2D_SK_P0,
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
@ -500,8 +504,9 @@ extern "C" {
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx);
GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
@ -556,8 +561,9 @@ extern "C" {
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
//
// operations on tensors with backpropagation
@ -610,24 +616,47 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a);
@ -667,31 +696,67 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// TODO: double-check this computation is correct
GGML_API struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_silu_back(
@ -705,10 +770,18 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_rms_norm_back(
@ -998,16 +1071,55 @@ extern "C" {
float min,
float max);
// padding = 1
// TODO: implement general-purpose convolutions
// GGML_API struct ggml_tensor * ggml_conv_1d(
// struct ggml_context * ctx,
// struct ggml_tensor * a,
// struct ggml_tensor * b,
// int s0
// int p0,
// int d0);
//
// GGML_API struct ggml_tensor * ggml_conv_2d(
// struct ggml_context * ctx,
// struct ggml_tensor * a,
// struct ggml_tensor * b,
// int s0,
// int s1,
// int p0,
// int p1,
// int d0,
// int d1);
// padding = half
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation
// not great ..
GGML_API struct ggml_tensor * ggml_conv_1d_1s(
// example:
// a: 3 80 768 1
// b: 3000 80 1 1
// res: 3000 768 1 1
// used in whisper
GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_conv_1d_2s(
// used in whisper
GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
@ -1035,6 +1147,26 @@ extern "C" {
struct ggml_tensor * c0,
struct ggml_tensor * c1);
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1
// w: 14
// res: 768 14 14 25
// used in sam
GGML_API struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w);
// reverse of ggml_win_part
// used in sam
GGML_API struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w);
// Mapping operations
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);

258
llama.cpp
View file

@ -19,6 +19,11 @@
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_K_QUANTS
#ifndef QK_K
#define QK_K 256
#endif
#endif
#include <array>
#include <ctime>
@ -177,6 +182,19 @@ struct llama_kv_cache {
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
@ -193,10 +211,6 @@ struct llama_model {
// context
struct ggml_context * ctx = NULL;
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self;
// the model memory buffer
llama_ctx_buffer buf;
@ -210,6 +224,11 @@ struct llama_model {
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
llama_vocab vocab;
~llama_model() {
if (ctx) {
ggml_free(ctx);
@ -228,24 +247,11 @@ struct llama_model {
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_context {
llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
std::mt19937 rng;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
@ -256,8 +262,16 @@ struct llama_context {
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
llama_model model;
llama_vocab vocab;
const llama_model & model;
const llama_vocab & vocab;
bool model_owner = false;
int64_t t_load_us;
int64_t t_start_us;
// key + value cache for the self attention
struct llama_kv_cache kv_self;
size_t mem_per_token = 0;
@ -886,6 +900,7 @@ static bool kv_cache_init(
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
cache.n = 0;
struct ggml_init_params params;
params.mem_size = cache.buf.size;
@ -904,6 +919,7 @@ static bool kv_cache_init(
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
(void) n_gpu_layers;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.v);
@ -918,21 +934,21 @@ static bool kv_cache_init(
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ -1,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ {0},
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.seed =*/ -1,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
};
return result;
@ -1026,7 +1042,8 @@ static const char *llama_model_type_name(e_model type) {
static void llama_model_load_internal(
const std::string & fname,
llama_context & lctx,
llama_model & model,
llama_vocab & vocab,
int n_ctx,
int n_batch,
int n_gpu_layers,
@ -1040,12 +1057,11 @@ static void llama_model_load_internal(
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
lctx.t_start_us = ggml_time_us();
model.t_start_us = ggml_time_us();
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
auto & model = lctx.model;
vocab = std::move(ml->file_loaders.at(0)->vocab);
model.hparams = ml->file_loaders.at(0)->hparams;
model.n_gpu_layers = n_gpu_layers;
llama_file_version file_version = ml->file_loaders.at(0)->file_version;
@ -1115,15 +1131,15 @@ static void llama_model_load_internal(
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
model.buf.resize(ctx_size);
if (use_mlock) {
lctx.model.mlock_buf.init(lctx.model.buf.addr);
lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
model.mlock_buf.init(model.buf.addr);
model.mlock_buf.grow_to(model.buf.size);
}
struct ggml_init_params params = {
/*.mem_size =*/ lctx.model.buf.size,
/*.mem_buffer =*/ lctx.model.buf.addr,
/*.mem_size =*/ model.buf.size,
/*.mem_buffer =*/ model.buf.addr,
/*.no_alloc =*/ ml->use_mmap,
};
@ -1253,7 +1269,7 @@ static void llama_model_load_internal(
vram_scratch = n_batch * MB;
ggml_cuda_set_scratch_size(vram_scratch);
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n",
fprintf(stderr, "%s: allocating batch_size x 1 MB = %zd MB VRAM for the scratch buffer\n",
__func__, vram_scratch / MB);
}
}
@ -1304,7 +1320,7 @@ static void llama_model_load_internal(
}
#endif
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
@ -1314,12 +1330,13 @@ static void llama_model_load_internal(
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
model.t_load_us = ggml_time_us() - model.t_start_us;
}
static bool llama_model_load(
const std::string & fname,
llama_context & lctx,
llama_model & model,
llama_vocab & vocab,
int n_ctx,
int n_batch,
int n_gpu_layers,
@ -1333,7 +1350,7 @@ static bool llama_model_load(
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
@ -1375,7 +1392,7 @@ static bool llama_eval_internal(
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = model.kv_self;
const auto & kv_self = lctx.kv_self;
LLAMA_ASSERT(!!kv_self.ctx);
@ -1623,7 +1640,7 @@ static bool llama_eval_internal(
model.layers[il].w1,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w2");
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
@ -1660,11 +1677,7 @@ static bool llama_eval_internal(
{
cur = ggml_rms_norm(ctx0, inpL);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_inpL");
cur = ggml_rms_norm(ctx0, cur);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_after");
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.norm);
@ -1733,7 +1746,7 @@ static bool llama_eval_internal(
//memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
// update kv token count
lctx.model.kv_self.n = n_past + N;
lctx.kv_self.n = n_past + N;
// extract logits
{
@ -2012,9 +2025,10 @@ void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * can
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is greater than p or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep) {
last_idx = i;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= p && i + 1 >= min_keep) {
last_idx = i + 1;
break;
}
}
@ -2499,8 +2513,23 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K != 0 || ny % QK_K != 0) {
fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K);
fprintf(stderr, "This is required to be able to use k-quants for now!\n");
fprintf(stderr, "========================================================================================\n\n");
throw std::runtime_error("Unsupported tensor size encountered\n");
}
}
if (tensor.name == "output.weight") {
new_type = GGML_TYPE_Q6_K;
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K == 0 && ny % QK_K == 0) {
new_type = GGML_TYPE_Q6_K;
}
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
@ -2628,12 +2657,39 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// interface implementation
//
struct llama_context * llama_init_from_file(
struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params) {
ggml_time_init();
llama_context * ctx = new llama_context;
llama_model * model = new llama_model;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
delete model;
fprintf(stderr, "%s: failed to load model\n", __func__);
return nullptr;
}
return model;
}
void llama_free_model(struct llama_model * model) {
delete model;
}
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {
if (!model) {
return nullptr;
}
llama_context * ctx = new llama_context(*model, model->vocab);
if (params.seed < 0) {
params.seed = time(NULL);
@ -2661,24 +2717,16 @@ struct llama_context * llama_init_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu,
params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);
return nullptr;
}
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
@ -2706,16 +2754,21 @@ struct llama_context * llama_init_from_file(
// this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init();
void *data_ptr = NULL;
void * data_ptr = NULL;
size_t data_size = 0;
if (params.use_mmap) {
data_ptr = ctx->model.mapping->addr;
data_size= ctx->model.mapping->size;
data_ptr = ctx->model.mapping->addr;
data_size = ctx->model.mapping->size;
} else {
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size= ggml_get_mem_size(ctx->model.ctx);
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size = ggml_get_mem_size (ctx->model.ctx);
}
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
@ -2723,12 +2776,13 @@ struct llama_context * llama_init_from_file(
return NULL; \
}
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
#undef LLAMA_METAL_CHECK_BUF
}
#endif
@ -2736,7 +2790,23 @@ struct llama_context * llama_init_from_file(
return ctx;
}
struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params) {
struct llama_model * model = llama_load_model_from_file(path_model, params);
if (!model) {
return nullptr;
}
struct llama_context * ctx = llama_new_context_with_model(model, params);
ctx->model_owner = true;
return ctx;
}
void llama_free(struct llama_context * ctx) {
if (ctx->model_owner) {
delete &ctx->model;
}
delete ctx;
}
@ -2753,11 +2823,9 @@ int llama_model_quantize(
}
}
int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
auto & model = ctx->model;
const int64_t t_start_lora_us = ggml_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
@ -3000,7 +3068,16 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
}
}
int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
@ -3008,7 +3085,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
}
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->model.kv_self.n;
return ctx->kv_self.n;
}
#define LLAMA_MAX_RNG_STATE (64*1024)
@ -3033,7 +3110,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->model.kv_self.buf.size;
const size_t s_kv = ctx->kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
@ -3099,7 +3176,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
// copy kv cache
{
const auto & kv_self = ctx->model.kv_self;
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
@ -3114,9 +3191,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
if (kv_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
char buffer[4096];
ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
gf.n_threads = 1;
@ -3205,7 +3280,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
// set kv cache
{
const auto & kv_self = ctx->model.kv_self;
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
@ -3222,9 +3297,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const size_t elt_size = ggml_element_size(kv_self.k);
char buffer[4096];
ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
gf.n_threads = 1;
@ -3251,7 +3324,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ggml_free(cpy_ctx);
}
ctx->model.kv_self.n = kv_ntok;
ctx->kv_self.n = kv_ntok;
}
const size_t nread = inp - src;
@ -3481,9 +3554,12 @@ void llama_print_timings(struct llama_context * ctx) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample, 1e6 / ctx->t_sample_us * n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval, 1e6 / ctx->t_p_eval_us * n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval, 1e6 / ctx->t_eval_us * n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
}
@ -3517,6 +3593,6 @@ const char * llama_print_system_info(void) {
}
// For internal test use
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors_by_name;
}

52
llama.h
View file

@ -26,6 +26,14 @@
# define LLAMA_API
#endif
#ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
@ -53,6 +61,7 @@ extern "C" {
// TODO: show sample usage
//
struct llama_model;
struct llama_context;
typedef int llama_token;
@ -71,28 +80,27 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
struct llama_context_params {
int seed; // RNG seed, -1 for random
int n_ctx; // text context
int n_batch; // prompt processing batch size
int n_gpu_layers; // number of layers to store in VRAM
int main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
bool low_vram; // if true, reduce VRAM usage at the cost of performance
int seed; // RNG seed, -1 for random
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
@ -137,12 +145,23 @@ extern "C" {
LLAMA_API int64_t llama_time_us();
LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params);
LLAMA_API void llama_free_model(struct llama_model * model);
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API struct llama_context * llama_init_from_file(
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params);
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
@ -159,8 +178,15 @@ extern "C" {
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API int llama_apply_lora_from_file(
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads),
"please use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
@ -319,7 +345,7 @@ extern "C" {
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif

View file

@ -1,3 +1,4 @@
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
#include "ggml.h"
#include <math.h>
@ -5,6 +6,10 @@
#include <stdlib.h>
#include <assert.h>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define MAX_NARGS 3
#undef MIN
@ -197,8 +202,23 @@ bool check_gradient(
float max_error_abs,
float max_error_rel) {
static int n_threads = -1;
if (n_threads < 0) {
n_threads = GGML_DEFAULT_N_THREADS;
const char *env = getenv("GGML_N_THREADS");
if (env) {
n_threads = atoi(env);
}
printf("GGML_N_THREADS = %d\n", n_threads);
}
struct ggml_cgraph gf = ggml_build_forward (f);
gf.n_threads = n_threads;
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
gb.n_threads = n_threads;
ggml_graph_compute(ctx0, &gf);
ggml_graph_reset (&gf);

View file

@ -181,6 +181,7 @@ int main(void) {
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);

View file

@ -28,6 +28,7 @@ int main(int argc, char **argv) {
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
// load the vocab
@ -36,10 +37,18 @@ int main(int argc, char **argv) {
lparams.vocab_only = true;
ctx = llama_init_from_file(fname.c_str(), lparams);
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
@ -48,6 +57,8 @@ int main(int argc, char **argv) {
if (n_vocab != 32000) {
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
llama_free_model(model);
llama_free(ctx);
return 2;
}
@ -77,10 +88,13 @@ int main(int argc, char **argv) {
}
fprintf(stderr, "\n");
llama_free_model(model);
llama_free(ctx);
return 3;
}
}
llama_free_model(model);
llama_free(ctx);
return 0;