Override tokens if their ids in added tokens are below the vocab_base size

Mistral Orca has added tokens that the ids are below 30,000. It causes some issues when converting models.
This commit is contained in:
김승덕/Infrastructure그룹(YA) 2023-10-12 02:53:09 +09:00
parent 24ba3d829e
commit 9b5907ead7

View file

@ -359,51 +359,62 @@ class BpeVocab:
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
added_tokens: dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
tokens_to_replace: dict[int, str] = {}
new_tokens: dict[int, str] = {}
for piece, idx in items:
if idx < vocab_size:
tokens_to_replace[idx] = piece
else:
new_tokens[idx] = piece
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise Exception(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
self.tokens_to_replace = tokens_to_replace
self.new_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.vocab_size: int = self.vocab_size_base + len(self.new_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(i)
for id in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(id) if id not in self.tokens_to_replace else self.tokens_to_replace[id]
text: bytes = piece.encode("utf-8")
score: float = tokenizer.get_score(i)
score: float = tokenizer.get_score(id)
toktype = gguf.TokenType.NORMAL
if tokenizer.is_unknown(i):
if tokenizer.is_unknown(id):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.is_control(i):
if tokenizer.is_control(id):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.is_unused(i):
if tokenizer.is_unused(id):
toktype = gguf.TokenType.UNUSED
if tokenizer.is_byte(i):
if tokenizer.is_byte(id):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
for text in self.new_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED