Removed xtc_threshold_max

This commit is contained in:
MaggotHATE 2024-10-12 18:35:56 +05:00
parent acada1a5e7
commit 9c43a01c5d
11 changed files with 21 additions and 55 deletions

View file

@ -987,13 +987,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sparams.xtc_threshold = std::stof(value); params.sparams.xtc_threshold = std::stof(value);
} }
).set_sparam()); ).set_sparam());
add_opt(common_arg(
{"-xtc-t-max", "--xtc-threshold-max"}, "N",
format("xtc upper threshold (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_threshold_max),
[](common_params & params, const std::string & value) {
params.sparams.xtc_threshold_max = std::stof(value);
}
).set_sparam());
add_opt(common_arg( add_opt(common_arg(
{"--typical"}, "N", {"--typical"}, "N",
format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p), format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),

View file

@ -2090,7 +2090,6 @@ void yaml_dump_non_result_info(FILE * stream, const common_params & params, cons
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p); fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "xtc_probability: %f # default: 0.5\n", sparams.xtc_probability); fprintf(stream, "xtc_probability: %f # default: 0.5\n", sparams.xtc_probability);
fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold); fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold);
fprintf(stream, "xtc_threshold_max: %f # default: 1.0\n", sparams.xtc_threshold_max);
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p); fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false"); fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");

View file

@ -112,7 +112,6 @@ struct common_sampler_params {
float min_p = 0.05f; // 0.0 = disabled float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // 0.5 = disabled float xtc_threshold = 0.10f; // 0.5 = disabled
float xtc_threshold_max = 1.00f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities

View file

@ -130,10 +130,10 @@ std::string common_sampler_params::print() const {
snprintf(result, sizeof(result), snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n" "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, xtc_threshold_max = %.3f, typical_p = %.3f, temp = %.3f\n" "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f", "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present, penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
top_k, tfs_z, top_p, min_p, xtc_probability, xtc_threshold, xtc_threshold_max, typ_p, temp, top_k, tfs_z, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
mirostat, mirostat_eta, mirostat_tau); mirostat, mirostat_eta, mirostat_tau);
return std::string(result); return std::string(result);
@ -185,7 +185,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_XTC: case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.xtc_threshold_max, params.min_keep, params.seed)); llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break; break;
case COMMON_SAMPLER_TYPE_TFS_Z: case COMMON_SAMPLER_TYPE_TFS_Z:
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));

View file

@ -245,17 +245,14 @@ Example usage: `--mirostat 2 --mirostat-lr 0.05 --mirostat-ent 3.0`
- `--xtc-probability N`: Sets the chance for token removal (checked once on sampler start) (default: 0.0). - `--xtc-probability N`: Sets the chance for token removal (checked once on sampler start) (default: 0.0).
- `--xtc-threshold N`: Sets a minimum probability threshold for tokens to be removed (default: 0.1). - `--xtc-threshold N`: Sets a minimum probability threshold for tokens to be removed (default: 0.1).
- `--xtc-threshold-max N`: Sets a maximum probability threshold for tokens to be removed (highly experimental) (default: 1.0).
Exclude Top Choices (XTC) is a unique sampler that is designed to remove top tokens from consideration and avoid more obvious and repetitive outputs. With a chance of `xtc-p` it searches for tokens with probabilities of `xtc-threshold` and above, then removes all such tokens except the least probable one. Exclude Top Choices (XTC) is a unique sampler that is designed to remove top tokens from consideration and avoid more obvious and repetitive outputs. With a chance of `xtc-p` it searches for tokens with probabilities of `xtc-threshold` and above, then removes all such tokens except the least probable one.
By removing top tokens XTC can improve the variety of answers, break writing clichés and inhibit repition, since clichés and repeated phrases are usually more likely to appear. By keeping the last token above the threshold, XTC ensures that the answer is still coherent. XTC is meant to be used for creative tasks, but feel free to experiment with different settings for different models. By removing top tokens XTC can improve the variety of answers, break writing clichés and inhibit repition, since clichés and repeated phrases are usually more likely to appear. By keeping the last token above the threshold, XTC ensures that the answer is still coherent. XTC is meant to be used for creative tasks, but feel free to experiment with different settings for different models.
The additional `xtc-threshold-max` parameter may help with finetuned models that already give relatively creative output, meaning that clichés and repetitive phrases may appear at lower probabilities. It allows to remove tokens from a middle range which will always be specific to a model, requiring careful experimenting. Leave `xtc-threshold-max` on default 1.0 for all base/instruct models.
Being experimental and unique, XTC is disabled by default. The recommended combination of samplers is Min-P followed by XTC on its default settings: `--sampling-seq mx --min-p 0.02 -xtc-p 0.5`. Being experimental and unique, XTC is disabled by default. The recommended combination of samplers is Min-P followed by XTC on its default settings: `--sampling-seq mx --min-p 0.02 -xtc-p 0.5`.
Example usage: `-xtc-p 0.5 -xtc-t 0.1 -xtc-t-max 1.0` Example usage: `-xtc-p 0.5 -xtc-t 0.1
### Logit Bias ### Logit Bias

View file

@ -45,7 +45,6 @@
min_p: 0.05, // 0 = disabled; recommended for non-english: ~ 0.4 min_p: 0.05, // 0 = disabled; recommended for non-english: ~ 0.4
xtc_probability: 0.0, // 0 = disabled; xtc_probability: 0.0, // 0 = disabled;
xtc_threshold: 0.1, // 0.5 = disabled; xtc_threshold: 0.1, // 0.5 = disabled;
xtc_threshold_max: 1.0, // 0 = disabled;
tfs_z: 1.0, // 1.0 = disabled tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled presence_penalty: 0.0, // 0.0 = disabled
@ -841,7 +840,6 @@ return html`
${FloatField({ label: "Typical-P", title: "Activates local typical sampling, a method used to limit the prediction of tokens that are atypical in the current context. The parameter p controls the strength of this limitation. A value of 1.0 means that this function is deactivated.", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })} ${FloatField({ label: "Typical-P", title: "Activates local typical sampling, a method used to limit the prediction of tokens that are atypical in the current context. The parameter p controls the strength of this limitation. A value of 1.0 means that this function is deactivated.", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
${FloatField({ label: "XTC probability", title: "Sets the chance for token removal (checked once on sampler start)", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })} ${FloatField({ label: "XTC probability", title: "Sets the chance for token removal (checked once on sampler start)", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })}
${FloatField({ label: "XTC threshold", title: "Sets a minimum probability threshold for tokens to be removed", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })} ${FloatField({ label: "XTC threshold", title: "Sets a minimum probability threshold for tokens to be removed", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })}
${FloatField({ label: "XTC max threshold", title: "Sets a maximum probability threshold for tokens to be removed (highly experimental)", max: 1.0, min: 0.0, name: "xtc_threshold_max", step: 0.01, value: params.value.xtc_threshold_max })}
${IntField({ label: "Min Keep", title: "If greater than 0, samplers are forced to return N possible tokens at minimum. Default is 0", max: 10, min: 0, name: "min_keep", value: params.value.min_keep })} ${IntField({ label: "Min Keep", title: "If greater than 0, samplers are forced to return N possible tokens at minimum. Default is 0", max: 10, min: 0, name: "min_keep", value: params.value.min_keep })}
</fieldset> </fieldset>
@ -1140,7 +1138,6 @@ document.addEventListener('DOMContentLoaded', (event) => {
min_p: { snapValue: 0.05, snapRangeMultiplier: 2 }, min_p: { snapValue: 0.05, snapRangeMultiplier: 2 },
xtc_probability: { snapValue: 0.0, snapRangeMultiplier: 4 }, xtc_probability: { snapValue: 0.0, snapRangeMultiplier: 4 },
xtc_threshold: { snapValue: 0.5, snapRangeMultiplier: 4 }, xtc_threshold: { snapValue: 0.5, snapRangeMultiplier: 4 },
xtc_threshold_max: { snapValue: 1.0, snapRangeMultiplier: 4 },
top_p: { snapValue: 1.0, snapRangeMultiplier: 4 }, top_p: { snapValue: 1.0, snapRangeMultiplier: 4 },
tfs_z: { snapValue: 1.0, snapRangeMultiplier: 4 }, tfs_z: { snapValue: 1.0, snapRangeMultiplier: 4 },
typical_p: { snapValue: 1.0, snapRangeMultiplier: 4 }, typical_p: { snapValue: 1.0, snapRangeMultiplier: 4 },

View file

@ -309,7 +309,6 @@
min_p: 0.05, // 0 = disabled min_p: 0.05, // 0 = disabled
xtc_probability: 0.0, // 0 = disabled; xtc_probability: 0.0, // 0 = disabled;
xtc_threshold: 0.1, // 0.5 = disabled; xtc_threshold: 0.1, // 0.5 = disabled;
xtc_threshold_max: 1.0, // 0 = disabled;
tfs_z: 1.0, // 1.0 = disabled tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled presence_penalty: 0.0, // 0.0 = disabled
@ -1018,7 +1017,6 @@
${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })} ${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}
${FloatField({ label: "XTC probability", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })} ${FloatField({ label: "XTC probability", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })}
${FloatField({ label: "XTC threshold", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })} ${FloatField({ label: "XTC threshold", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })}
${FloatField({ label: "XTC upper threshold", max: 1.0, min: 0.0, name: "xtc_threshold_max", step: 0.01, value: params.value.xtc_threshold_max })}
</fieldset> </fieldset>
<hr /> <hr />
<fieldset class="three"> <fieldset class="three">

View file

@ -893,7 +893,6 @@ struct server_context {
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p); slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability); slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold); slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
slot.sparams.xtc_threshold_max = json_value(data, "xtc_threshold_max", default_sparams.xtc_threshold_max);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p); slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp); slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
@ -1244,7 +1243,6 @@ struct server_context {
{"min_p", slot.sparams.min_p}, {"min_p", slot.sparams.min_p},
{"xtc_probability", slot.sparams.xtc_probability}, {"xtc_probability", slot.sparams.xtc_probability},
{"xtc_threshold", slot.sparams.xtc_threshold}, {"xtc_threshold", slot.sparams.xtc_threshold},
{"xtc_threshold_max", slot.sparams.xtc_threshold_max},
{"tfs_z", slot.sparams.tfs_z}, {"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p}, {"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n}, {"repeat_last_n", slot.sparams.penalty_last_n},

View file

@ -1095,7 +1095,7 @@ extern "C" {
LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent); LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335 /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, float t_max, size_t min_keep, uint32_t seed); LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.

View file

@ -1064,7 +1064,6 @@ struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, floa
struct llama_sampler_xtc { struct llama_sampler_xtc {
const float probability; const float probability;
const float threshold; const float threshold;
const float threshold_max;
const size_t min_keep; const size_t min_keep;
const uint32_t seed; const uint32_t seed;
@ -1082,8 +1081,6 @@ static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data
if (ctx->probability <= 0.0f if (ctx->probability <= 0.0f
|| ctx->threshold > 0.5f || ctx->threshold > 0.5f
|| ctx->threshold_max <= 0.0f
|| ctx->threshold_max <= ctx->threshold
|| cur_p->size <= 2) { || cur_p->size <= 2) {
return; return;
} }
@ -1095,35 +1092,29 @@ static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data
// in case it's not sorted/recalculated yet // in case it's not sorted/recalculated yet
llama_sampler_softmax_impl(cur_p); llama_sampler_softmax_impl(cur_p);
int pos_first = -1;
int pos_last = 0; int pos_last = 0;
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].p - ctx->threshold >= -1e-5) { if (cur_p->data[i].p - ctx->threshold >= -1e-5) {
if (cur_p->data[i].p - ctx->threshold_max > 1e-3) pos_first = i;
pos_last = i; pos_last = i;
} else { } else break;
break;
}
} }
int to_remove = pos_last - (1 + pos_first); if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
if (cur_p->size - to_remove >= ctx->min_keep && to_remove > 0) { size_t last_idx = cur_p->size - pos_last;
size_t last_idx = cur_p->size - to_remove; for (size_t i = 0; i <= last_idx; ++i) {
cur_p->data[i] = cur_p->data[i + pos_last];
for (size_t i = pos_first + 1; i <= last_idx; ++i) {
cur_p->data[i] = cur_p->data[i + to_remove];
} }
cur_p->size = cur_p->size - to_remove; cur_p->size = cur_p->size - pos_last;
} }
} }
static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->threshold_max, ctx->min_keep, ctx->seed); auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);
// copy the state // copy the state
{ {
@ -1154,14 +1145,13 @@ static struct llama_sampler_i llama_sampler_xtc_i = {
/* .free = */ llama_sampler_xtc_free, /* .free = */ llama_sampler_xtc_free,
}; };
struct llama_sampler * llama_sampler_init_xtc(float p, float t, float t_max, size_t min_keep, uint32_t seed) { struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
auto seed_cur = get_rng_seed(seed); auto seed_cur = get_rng_seed(seed);
return new llama_sampler { return new llama_sampler {
/* .iface = */ &llama_sampler_xtc_i, /* .iface = */ &llama_sampler_xtc_i,
/* .ctx = */ new llama_sampler_xtc { /* .ctx = */ new llama_sampler_xtc {
/* .probability = */ p, /* .probability = */ p,
/* .threshold = */ t, /* .threshold = */ t,
/* .threshold_max = */ t_max,
/* .min_keep = */ min_keep, /* .min_keep = */ min_keep,
/* .seed = */ seed, /* .seed = */ seed,
/* .seed_cur = */ seed_cur, /* .seed_cur = */ seed_cur,

View file

@ -111,7 +111,7 @@ static void test_min_p(const std::vector<float> & probs, const std::vector<float
} }
} }
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t, float t_max) { static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
const size_t n_vocab = probs.size(); const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur; std::vector<llama_token_data> cur;
@ -124,7 +124,7 @@ static void test_xtc(const std::vector<float> & probs, const std::vector<float>
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p); APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p); DUMP(&cur_p);
APPLY(llama_sampler_init_xtc(p, t, t_max, 0, 0), &cur_p); APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
DUMP(&cur_p); DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size()); GGML_ASSERT(cur_p.size == expected_probs.size());
@ -306,7 +306,7 @@ static void test_perf() {
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32); BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32); BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32); BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 0.8f, 1, 1), data, 32); BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
BENCH(llama_sampler_init_softmax (), data, 32); BENCH(llama_sampler_init_softmax (), data, 32);
} }
@ -333,17 +333,12 @@ int main(void) {
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
printf("XTC should:\n"); printf("XTC should:\n");
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.10f, 1.00f); test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.10f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.1f}, 0.99f, 0.10f, 0.35f); test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.20f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.20f, 1.00f); test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.30f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.30f, 1.00f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.1f}, 0.99f, 0.10f, 0.25f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.2f, 0.1f}, 0.99f, 0.20f, 0.35f);
printf("XTC should not:\n"); printf("XTC should not:\n");
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.10f, 0.15f); test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.40f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.20f, 0.25f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.30f, 0.35f);
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.40f, 1.00f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);